These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 23102330)

  • 1. Control of nanoscale friction on gold in an ionic liquid by a potential-dependent ionic lubricant layer.
    Sweeney J; Hausen F; Hayes R; Webber GB; Endres F; Rutland MW; Bennewitz R; Atkin R
    Phys Rev Lett; 2012 Oct; 109(15):155502. PubMed ID: 23102330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ionic liquid lubrication: influence of ion structure, surface potential and sliding velocity.
    Li H; Rutland MW; Atkin R
    Phys Chem Chem Phys; 2013 Sep; 15(35):14616-23. PubMed ID: 23836254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of ion structure on nanoscale friction in protic ionic liquids.
    Sweeney J; Webber GB; Rutland MW; Atkin R
    Phys Chem Chem Phys; 2014 Aug; 16(31):16651-8. PubMed ID: 24992959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ionic liquid nanotribology: mica-silica interactions in ethylammonium nitrate.
    Werzer O; Cranston ED; Warr GG; Atkin R; Rutland MW
    Phys Chem Chem Phys; 2012 Apr; 14(15):5147-52. PubMed ID: 22109078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Boundary layer friction of solvate ionic liquids as a function of potential.
    Li H; Rutland MW; Watanabe M; Atkin R
    Faraday Discuss; 2017 Jul; 199():311-322. PubMed ID: 28422196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Force microscopy of layering and friction in an ionic liquid.
    Hoth J; Hausen F; Müser MH; Bennewitz R
    J Phys Condens Matter; 2014 Jul; 26(28):284110. PubMed ID: 24919549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of alkyl chain length and anion species on the interfacial nanostructure of ionic liquids at the Au(111)-ionic liquid interface as a function of potential.
    Li H; Endres F; Atkin R
    Phys Chem Chem Phys; 2013 Sep; 15(35):14624-33. PubMed ID: 23873270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tribotronic control of friction in oil-based lubricants with ionic liquid additives.
    Cooper PK; Li H; Rutland MW; Webber GB; Atkin R
    Phys Chem Chem Phys; 2016 Aug; 18(34):23657-62. PubMed ID: 27511143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An ionic liquid lubricant enables superlubricity to be "switched on" in situ using an electrical potential.
    Li H; Wood RJ; Rutland MW; Atkin R
    Chem Commun (Camb); 2014 Apr; 50(33):4368-70. PubMed ID: 24643511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dependence of boundary lubrication on the misfit angle between the sliding surfaces.
    Braun OM; Manini N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Feb; 83(2 Pt 1):021601. PubMed ID: 21405848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrotunable Lubrication with Ionic Liquids: the Effects of Cation Chain Length and Substrate Polarity.
    Di Lecce S; Kornyshev AA; Urbakh M; Bresme F
    ACS Appl Mater Interfaces; 2020 Jan; 12(3):4105-4113. PubMed ID: 31875392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoscale lubrication of ionic surfaces controlled via a strong electric field.
    Strelcov E; Kumar R; Bocharova V; Sumpter BG; Tselev A; Kalinin SV
    Sci Rep; 2015 Jan; 5():8049. PubMed ID: 25623295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frictional characteristics of nano-confined water mediated hole-doped single-layer graphene on silica surface.
    Chu ED; Wang PH; Hong YZ; Woon WY; Chiu HC
    Nanotechnology; 2019 Jan; 30(4):045706. PubMed ID: 30479310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Near surface properties of mixtures of propylammonium nitrate with n-alkanols 2. Nanotribology and fluid dynamics.
    Sweeney J; Webber GB; Atkin R
    Phys Chem Chem Phys; 2015 Oct; 17(40):26629-37. PubMed ID: 26415040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ionic enhancement of silica surface nanowear in electrolyte solutions.
    Vakarelski IU; Teramoto N; McNamee CE; Marston JO; Higashitani K
    Langmuir; 2012 Nov; 28(46):16072-9. PubMed ID: 23110598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The electrochemical surface forces apparatus: the effect of surface roughness, electrostatic surface potentials, and anodic oxide growth on interaction forces, and friction between dissimilar surfaces in aqueous solutions.
    Valtiner M; Banquy X; Kristiansen K; Greene GW; Israelachvili JN
    Langmuir; 2012 Sep; 28(36):13080-93. PubMed ID: 22877582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ionic Liquid Adsorption and Nanotribology at the Silica-Oil Interface: Hundred-Fold Dilution in Oil Lubricates as Effectively as the Pure Ionic Liquid.
    Li H; Cooper PK; Somers AE; Rutland MW; Howlett PC; Forsyth M; Atkin R
    J Phys Chem Lett; 2014 Dec; 5(23):4095-9. PubMed ID: 26278938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Addition of low concentrations of an ionic liquid to a base oil reduces friction over multiple length scales: a combined nano- and macrotribology investigation.
    Li H; Somers AE; Howlett PC; Rutland MW; Forsyth M; Atkin R
    Phys Chem Chem Phys; 2016 Mar; 18(9):6541-7. PubMed ID: 26865399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shape-dependent adhesion and friction of Au nanoparticles probed with atomic force microscopy.
    Yuk Y; Hong JW; Lee H; Han SW; Young Park J
    Nanotechnology; 2015 Mar; 26(13):135707. PubMed ID: 25765817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poly(ethylene oxide) Mushrooms Adsorbed at Silica-Ionic Liquid Interfaces Reduce Friction.
    Sweeney J; Webber GB; Atkin R
    Langmuir; 2016 Mar; 32(8):1947-54. PubMed ID: 26844589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.