These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 23102697)

  • 21. Natural attenuation of chloroethenes: identification of sequential reductive/oxidative biodegradation by microcosm studies.
    Schmidt KR; Tiehm A
    Water Sci Technol; 2008; 58(5):1137-45. PubMed ID: 18824815
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cometabolism of cis-1,2-dichloroethene by aerobic cultures grown on vinyl chloride as the primary substrate.
    Verce MF; Gunsch CK; Danko AS; Freedman DL
    Environ Sci Technol; 2002 May; 36(10):2171-7. PubMed ID: 12038826
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Contributions of biotic and abiotic pathways to anaerobic trichloroethene transformation in low permeability source zones.
    Berns EC; Sanford RA; Valocchi AJ; Strathmann TJ; Schaefer CE; Werth CJ
    J Contam Hydrol; 2019 Jul; 224():103480. PubMed ID: 31006532
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Robustness of an aerobic metabolically vinyl chloride degrading bacterial enrichment culture.
    Zhao HP; Schmidt KR; Lohner S; Tiehm A
    Water Sci Technol; 2011; 64(9):1796-803. PubMed ID: 22020471
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Aerobic co-metabolic cis-Dichloroethene degradation with Trichloroethene as primary substrate and effects of concentration ratios.
    Willmann A; Tiehm A
    Chemosphere; 2024 Feb; 350():141000. PubMed ID: 38135124
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biodegradation of cis-dichloroethene as the sole carbon source by a beta-proteobacterium.
    Coleman NV; Mattes TE; Gossett JM; Spain JC
    Appl Environ Microbiol; 2002 Jun; 68(6):2726-30. PubMed ID: 12039726
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessing the impact of VOC-contaminated groundwater on surface water at the city scale.
    Ellis PA; Rivett MO
    J Contam Hydrol; 2007 Apr; 91(1-2):107-27. PubMed ID: 17182150
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Degradation product partitioning in source zones containing chlorinated ethene dense non-aqueous-phase liquid.
    Ramsburg CA; Thornton CE; Christ JA
    Environ Sci Technol; 2010 Dec; 44(23):9105-11. PubMed ID: 21053958
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In situ reductive dechlorination of chlorinated ethenes in high nitrate groundwater.
    Bennett P; Gandhi D; Warner S; Bussey J
    J Hazard Mater; 2007 Nov; 149(3):568-73. PubMed ID: 17689011
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Aerobic cometabolism of trichloroethene and cis-dichloroethene with benzene and chlorinated benzenes as growth substrates.
    Elango V; Kurtz HD; Freedman DL
    Chemosphere; 2011 Jun; 84(2):247-53. PubMed ID: 21531438
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of pore velocity on biodegradation of cis-dichloroethene (DCE) in column experiments.
    Mendoza-Sanchez I; Autenrieth RL; McDonald TJ; Cunningham JA
    Biodegradation; 2010 Jun; 21(3):365-77. PubMed ID: 19894128
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chlorinated Ethene Degradation Rate Coefficients Simulated with Intact Sandstone Core Microcosms.
    Yu R; Murdoch LC; Falta RW; Andrachek RG; Pierce AA; Parker BL; Cherry JA; Freedman DL
    Environ Sci Technol; 2020 Dec; 54(24):15829-15839. PubMed ID: 33210923
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dechlorination after thermal treatment of a TCE-contaminated aquifer: laboratory experiments.
    Friis AK; Edwards EA; Albrechtsen HJ; Udell KS; Duhamel M; Bjerg PL
    Chemosphere; 2007 Mar; 67(4):816-25. PubMed ID: 17174379
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stable carbon isotope enrichment factors for cis-1,2-dichloroethene and vinyl chloride reductive dechlorination by Dehalococcoides.
    Fletcher KE; Nijenhuis I; Richnow HH; Löffler FE
    Environ Sci Technol; 2011 Apr; 45(7):2951-7. PubMed ID: 21391634
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bacterial community analysis of shallow groundwater undergoing sequential anaerobic and aerobic chloroethene biotransformation.
    Miller TR; Franklin MP; Halden RU
    FEMS Microbiol Ecol; 2007 May; 60(2):299-311. PubMed ID: 17386036
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Trichloroethene and cis-1,2-dichloroethene concentration-dependent toxicity model simulates anaerobic dechlorination at high concentrations: I. batch-fed reactors.
    Sabalowsky AR; Semprini L
    Biotechnol Bioeng; 2010 Oct; 107(3):529-39. PubMed ID: 20506556
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison between acetate and hydrogen as electron donors and implications for the reductive dehalogenation of PCE and TCE.
    Lee IS; Bae JH; McCarty PL
    J Contam Hydrol; 2007 Oct; 94(1-2):76-85. PubMed ID: 17610987
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Temperature dependence of anaerobic TCE-dechlorination in a highly enriched Dehalococcoides-containing culture.
    Friis AK; Heimann AC; Jakobsen R; Albrechtsen HJ; Cox E; Bjerg PL
    Water Res; 2007 Jan; 41(2):355-64. PubMed ID: 17129596
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Trichloroethene and cis-1,2-dichloroethene concentration-dependent toxicity model simulates anaerobic dechlorination at high concentrations. II: continuous flow and attached growth reactors.
    Sabalowsky AR; Semprini L
    Biotechnol Bioeng; 2010 Oct; 107(3):540-9. PubMed ID: 20517980
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantifying in situ transformation rates of chlorinated ethenes by combining compound-specific stable isotope analysis, groundwater dating, and carbon isotope mass balances.
    Aeppli C; Hofstetter TB; Amaral HI; Kipfer R; Schwarzenbach RP; Berg M
    Environ Sci Technol; 2010 May; 44(10):3705-11. PubMed ID: 20411982
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.