BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 23102772)

  • 1. Oxidation of N-hydroxy-l-arginine by hypochlorous acid to form nitroxyl (HNO).
    Cline MR; Chavez TA; Toscano JP
    J Inorg Biochem; 2013 Jan; 118():148-54. PubMed ID: 23102772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of nitroxyl by heme protein-mediated peroxidation of hydroxylamine but not N-hydroxy-L-arginine.
    Donzelli S; Espey MG; Flores-Santana W; Switzer CH; Yeh GC; Huang J; Stuehr DJ; King SB; Miranda KM; Wink DA
    Free Radic Biol Med; 2008 Sep; 45(5):578-84. PubMed ID: 18503778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mechanism underlying nitroxyl and nitric oxide formation from hydroxamic acids.
    Samuni Y; Samuni U; Goldstein S
    Biochim Biophys Acta; 2012 Oct; 1820(10):1560-6. PubMed ID: 22634736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discriminating formation of HNO from other reactive nitrogen oxide species.
    Donzelli S; Espey MG; Thomas DD; Mancardi D; Tocchetti CG; Ridnour LA; Paolocci N; King SB; Miranda KM; Lazzarino G; Fukuto JM; Wink DA
    Free Radic Biol Med; 2006 Mar; 40(6):1056-66. PubMed ID: 16540401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidative heme protein-mediated nitroxyl (HNO) generation.
    Reisz JA; Bechtold E; King SB
    Dalton Trans; 2010 Jun; 39(22):5203-12. PubMed ID: 20502824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of intramolecular and intermolecular sulfenamides, sulfinamides, and sulfonamides by hypochlorous acid: a potential pathway for oxidative cross-linking of low-density lipoprotein by myeloperoxidase.
    Fu X; Mueller DM; Heinecke JW
    Biochemistry; 2002 Jan; 41(4):1293-301. PubMed ID: 11802729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Underlying Mechanism of HNO Production by the Myoglobin-Mediated Oxidation of Hydroxylamine.
    Álvarez L; Suárez SA; González PJ; Brondino CD; Doctorovich F; Martí MA
    Inorg Chem; 2020 Jun; 59(12):7939-7952. PubMed ID: 32436700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic feasibility of nitroxyl reduction by physiological reductants and biological implications.
    Jackson MI; Han TH; Serbulea L; Dutton A; Ford E; Miranda KM; Houk KN; Wink DA; Fukuto JM
    Free Radic Biol Med; 2009 Oct; 47(8):1130-9. PubMed ID: 19577638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of glutathione sulfonamide and dehydroglutathione from GSH by myeloperoxidase-derived oxidants and detection using a novel LC-MS/MS method.
    Harwood DT; Kettle AJ; Winterbourn CC
    Biochem J; 2006 Oct; 399(1):161-8. PubMed ID: 16846394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of cyclic nitroxide radicals as HNO scavengers.
    Samuni Y; Samuni U; Goldstein S
    J Inorg Biochem; 2013 Jan; 118():155-61. PubMed ID: 23122928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The pharmacological activity of nitroxyl: a potent vasodilator with activity similar to nitric oxide and/or endothelium-derived relaxing factor.
    Fukuto JM; Chiang K; Hszieh R; Wong P; Chaudhuri G
    J Pharmacol Exp Ther; 1992 Nov; 263(2):546-51. PubMed ID: 1331403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic analysis of the role of histidine chloramines in hypochlorous acid mediated protein oxidation.
    Pattison DI; Davies MJ
    Biochemistry; 2005 May; 44(19):7378-87. PubMed ID: 15882077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of HNO production from N,O-bis-acylated hydroxylamine derivatives.
    Sutton AD; Williamson M; Weismiller H; Toscano JP
    Org Lett; 2012 Jan; 14(2):472-5. PubMed ID: 22196028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical oxidation of N-hydroxyguanidine compounds. Release of nitric oxide, nitroxyl and possible relationship to the mechanism of biological nitric oxide generation.
    Fukuto JM; Wallace GC; Hszieh R; Chaudhuri G
    Biochem Pharmacol; 1992 Feb; 43(3):607-13. PubMed ID: 1540216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of plasma proteins that are susceptible to thiol oxidation by hypochlorous acid and N-chloramines.
    Summers FA; Morgan PE; Davies MJ; Hawkins CL
    Chem Res Toxicol; 2008 Sep; 21(9):1832-40. PubMed ID: 18698849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EPR and ENDOR characterization of the reactive intermediates in the generation of NO by cryoreduced oxy-nitric oxide synthase from Geobacillus stearothermophilus.
    Davydov R; Sudhamsu J; Lees NS; Crane BR; Hoffman BM
    J Am Chem Soc; 2009 Oct; 131(40):14493-507. PubMed ID: 19754116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitrogen oxides and hydroxyguanidines: formation of donors of nitric and nitrous oxides and possible relevance to nitrous oxide formation by nitric oxide synthase.
    Southan GJ; Srinivasan A
    Nitric Oxide; 1998; 2(4):270-86. PubMed ID: 9851368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of nitroxyl (HNO) by membrane inlet mass spectrometry.
    Cline MR; Tu C; Silverman DN; Toscano JP
    Free Radic Biol Med; 2011 May; 50(10):1274-9. PubMed ID: 21349325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidation of 5-thio-2-nitrobenzoic acid, by the biologically relevant oxidants peroxynitrite anion, hydrogen peroxide and hypochlorous acid.
    Landino LM; Mall CB; Nicklay JJ; Dutcher SK; Moynihan KL
    Nitric Oxide; 2008 Feb; 18(1):11-8. PubMed ID: 18023374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methionine sulfoxide and proteolytic cleavage contribute to the inactivation of cathepsin G by hypochlorous acid: an oxidative mechanism for regulation of serine proteinases by myeloperoxidase.
    Shao B; Belaaouaj A; Verlinde CL; Fu X; Heinecke JW
    J Biol Chem; 2005 Aug; 280(32):29311-21. PubMed ID: 15967795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.