These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 23103)

  • 1. Transport and oxidation of choline by liver mitochondria.
    Tyler DD
    Biochem J; 1977 Sep; 166(3):571-81. PubMed ID: 23103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The pathway of inorganic-phosphate efflux from isolated liver mitochondria during adenosine triphosphate hydrolysis.
    Tyler DD
    Biochem J; 1980 Dec; 192(3):821-8. PubMed ID: 6453587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of the mitochondrial matrix volume in vivo and in vitro. The role of calcium.
    Halestrap AP; Quinlan PT; Whipps DE; Armston AE
    Biochem J; 1986 Jun; 236(3):779-87. PubMed ID: 2431681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prooxidants open both the mitochondrial permeability transition pore and a low-conductance channel in the inner mitochondrial membrane.
    Kushnareva YE; Sokolove PM
    Arch Biochem Biophys; 2000 Apr; 376(2):377-88. PubMed ID: 10775426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The action of Nupercaine on calcium efflux from rat liver mitochondria.
    Dawson AP; Fulton DV
    Biochem J; 1980 Jun; 188(3):749-55. PubMed ID: 6162452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative damage to mitochondria is mediated by the Ca(2+)-dependent inner-membrane permeability transition.
    Takeyama N; Matsuo N; Tanaka T
    Biochem J; 1993 Sep; 294 ( Pt 3)(Pt 3):719-25. PubMed ID: 7691056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of ruthenium red on the Ca2+ and Sr2+ efflux from rat liver mitochondria: influence of nupercaine.
    Pezzi L
    Biosci Rep; 1984 Mar; 4(3):231-7. PubMed ID: 6202338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cd2+ versus Ca2+-produced mitochondrial membrane permeabilization: a proposed direct participation of respiratory complexes I and III.
    Belyaeva EA; Glazunov VV; Korotkov SM
    Chem Biol Interact; 2004 Dec; 150(3):253-70. PubMed ID: 15560892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mechanism of acute cytotoxicity of triethylphosphine gold(I) complexes. III. Chlorotriethylphosphine gold(I)-induced alterations in isolated rat liver mitochondrial function.
    Hoke GD; Rush GF; Mirabelli CK
    Toxicol Appl Pharmacol; 1989 Jun; 99(1):50-60. PubMed ID: 2471292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Liver mitochondrial pyrophosphate concentration is increased by Ca2+ and regulates the intramitochondrial volume and adenine nucleotide content.
    Davidson AM; Halestrap AP
    Biochem J; 1987 Sep; 246(3):715-23. PubMed ID: 2825649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Intermembrane electron transport in the dynamics of high-amplitude swelling of rat liver mitochondria].
    Lemeshko VV; Shekh VE; Aleksenko TV
    Ukr Biokhim Zh (1978); 1995; 67(2):28-34. PubMed ID: 8592781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ruthenium red-sensitive and -insensitive release of Ca2+ from uncoupled heart mitochondria.
    Jurkowitz MS; Geisbuhler T; Jung DW; Brierley GP
    Arch Biochem Biophys; 1983 May; 223(1):120-8. PubMed ID: 6190435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reye's syndrome: mitochondrial swelling and Ca2+ release induced by Reye's plasma, allantoin, and salicylate.
    Martens ME; Chang CH; Lee CP
    Arch Biochem Biophys; 1986 Feb; 244(2):773-86. PubMed ID: 3080954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CALCIUM ION ACCUMULATION AND VOLUME CHANGES OF ISOLATED LIVER MITOCHONDRIA. CALCIUM ION-INDUCED SWELLING.
    CHAPPELL JB; CROFTS AR
    Biochem J; 1965 May; 95(2):378-86. PubMed ID: 14340088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uncoupler-stimulated oxidation of choline by rat-liver mitochondria.
    de Ridder JJ; Kleverlaan NT; Verdouw-Chamalaun CV; Schippers PG; van Dam K
    Biochim Biophys Acta; 1973 Dec; 325(3):397-405. PubMed ID: 4778287
    [No Abstract]   [Full Text] [Related]  

  • 16. Evidence of a phosphate-transporter system in the inner membrane of isolated mitochondria.
    Tyler DD
    Biochem J; 1969 Mar; 111(5):665-78. PubMed ID: 5783467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Ca2+, peroxides, SH reagents, phosphate and aging on the permeability of mitochondrial membranes.
    Rizzuto R; Pitton G; Azzone GF
    Eur J Biochem; 1987 Jan; 162(2):239-49. PubMed ID: 3803384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alterations in mitochondrial Ca2+ flux by the antibiotic X-537A (lasalocid-A).
    Antonio RV; da Silva LP; Vercesi AE
    Biochim Biophys Acta; 1991 Feb; 1056(3):250-8. PubMed ID: 1705820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maturation in liver mitochondria of Ruthenium Red-sensitive calcium-ion-transport activity and the influence of glucagon administration in vivo and in utero.
    Prpić V; Bygrave FL
    Biochem J; 1981 Apr; 196(1):207-16. PubMed ID: 6171266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. p-Bromophenacyl bromide prevents cumene hydroperoxide-induced mitochondrial permeability transition by inhibiting pyridine nucleotide oxidation.
    Zhukova A; Gogvadze G; Gogvadze V
    Redox Rep; 2004; 9(2):117-21. PubMed ID: 15274248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.