BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 23103157)

  • 1. Mitigation of diabetes-related complications in implanted collagen and elastin scaffolds using matrix-binding polyphenol.
    Chow JP; Simionescu DT; Warner H; Wang B; Patnaik SS; Liao J; Simionescu A
    Biomaterials; 2013 Jan; 34(3):685-95. PubMed ID: 23103157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyphenol-stabilized tubular elastin scaffolds for tissue engineered vascular grafts.
    Chuang TH; Stabler C; Simionescu A; Simionescu DT
    Tissue Eng Part A; 2009 Oct; 15(10):2837-51. PubMed ID: 19254115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stabilized Collagen and Elastin-Based Scaffolds for Mitral Valve Tissue Engineering.
    Deborde C; Simionescu DT; Wright C; Liao J; Sierad LN; Simionescu A
    Tissue Eng Part A; 2016 Nov; 22(21-22):1241-1251. PubMed ID: 27608885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stabilized collagen scaffolds for heart valve tissue engineering.
    Tedder ME; Liao J; Weed B; Stabler C; Zhang H; Simionescu A; Simionescu DT
    Tissue Eng Part A; 2009 Jun; 15(6):1257-68. PubMed ID: 18928400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immunomodulatory effects of adipose tissue-derived stem cells on elastin scaffold remodeling in diabetes.
    Chow JP; Simionescu DT; Carter AL; Simionescu A
    Tissue Eng Regen Med; 2016 Dec; 13(6):701-712. PubMed ID: 30603451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigating the morphological, mechanical and degradation properties of scaffolds comprising collagen, gelatin and elastin for use in soft tissue engineering.
    Grover CN; Cameron RE; Best SM
    J Mech Behav Biomed Mater; 2012 Jun; 10():62-74. PubMed ID: 22520419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical fabrication of a biomimetic elastin-containing bi-layered scaffold for vascular tissue engineering.
    Nguyen TU; Shojaee M; Bashur CA; Kishore V
    Biofabrication; 2018 Nov; 11(1):015007. PubMed ID: 30411718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The performance of cross-linked acellular arterial scaffolds as vascular grafts; pre-clinical testing in direct and isolation loop circulatory models.
    Pennel T; Fercana G; Bezuidenhout D; Simionescu A; Chuang TH; Zilla P; Simionescu D
    Biomaterials; 2014 Aug; 35(24):6311-22. PubMed ID: 24816365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Incorporation of intact elastin scaffolds in tissue-engineered collagen-based vascular grafts.
    Berglund JD; Nerem RM; Sambanis A
    Tissue Eng; 2004; 10(9-10):1526-35. PubMed ID: 15588412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A biomaterial composed of collagen and solubilized elastin enhances angiogenesis and elastic fiber formation without calcification.
    Daamen WF; Nillesen ST; Wismans RG; Reinhardt DP; Hafmans T; Veerkamp JH; van Kuppevelt TH
    Tissue Eng Part A; 2008 Mar; 14(3):349-60. PubMed ID: 18333787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biocompatibility and remodeling potential of pure arterial elastin and collagen scaffolds.
    Simionescu DT; Lu Q; Song Y; Lee JS; Rosenbalm TN; Kelley C; Vyavahare NR
    Biomaterials; 2006 Feb; 27(5):702-13. PubMed ID: 16048731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Challenges in vascular tissue engineering for diabetic patients.
    Dhulekar J; Simionescu A
    Acta Biomater; 2018 Apr; 70():25-34. PubMed ID: 29396167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tissue response of defined collagen-elastin scaffolds in young and adult rats with special attention to calcification.
    Daamen WF; Nillesen ST; Hafmans T; Veerkamp JH; van Luyn MJ; van Kuppevelt TH
    Biomaterials; 2005 Jan; 26(1):81-92. PubMed ID: 15193883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trilayer scaffold with cardiosphere-derived cells for heart valve tissue engineering.
    Chen Q; Bruyneel A; Carr C; Czernuszka J
    J Biomed Mater Res B Appl Biomater; 2020 Apr; 108(3):729-737. PubMed ID: 31184806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A smart bilayer scaffold of elastin-like recombinamer and collagen for soft tissue engineering.
    Kinikoglu B; Rodríguez-Cabello JC; Damour O; Hasirci V
    J Mater Sci Mater Med; 2011 Jun; 22(6):1541-54. PubMed ID: 21505829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro characterization of a collagen scaffold enzymatically cross-linked with a tailored elastin-like polymer.
    Garcia Y; Hemantkumar N; Collighan R; Griffin M; Rodriguez-Cabello JC; Pandit A
    Tissue Eng Part A; 2009 Apr; 15(4):887-99. PubMed ID: 18976154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of an elastic decellularized tendon-derived scaffold for the vascular tissue engineering application.
    Ghazanfari S; Alberti KA; Xu Q; Khademhosseini A
    J Biomed Mater Res A; 2019 Jun; 107(6):1225-1234. PubMed ID: 30684384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel technique to produce tubular scaffolds based on collagen and elastin.
    Rodrigues ICP; Pereira KD; Woigt LF; Jardini AL; Luchessi AD; Lopes ÉSN; Webster TJ; Gabriel LP
    Artif Organs; 2021 May; 45(5):E113-E122. PubMed ID: 33169400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Vivo Biological Behavior of Polymer Scaffolds of Natural Origin in the Bone Repair Process.
    Cunha FB; Pomini KT; Plepis AMG; Martins VDCA; Machado EG; de Moraes R; Munhoz MAES; Machado MVR; Duarte MAH; Alcalde MP; Buchaim DV; Buchaim RL; Fernandes VAR; Pereira ESBM; Pelegrine AA; Cunha MRD
    Molecules; 2021 Mar; 26(6):. PubMed ID: 33805847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and evaluation of molecularly-defined collagen-elastin-glycosaminoglycan scaffolds for tissue engineering.
    Daamen WF; van Moerkerk HT; Hafmans T; Buttafoco L; Poot AA; Veerkamp JH; van Kuppevelt TH
    Biomaterials; 2003 Oct; 24(22):4001-9. PubMed ID: 12834595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.