These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
325 related articles for article (PubMed ID: 23103164)
1. A small molecule that promotes cardiac differentiation of human pluripotent stem cells under defined, cytokine- and xeno-free conditions. Minami I; Yamada K; Otsuji TG; Yamamoto T; Shen Y; Otsuka S; Kadota S; Morone N; Barve M; Asai Y; Tenkova-Heuser T; Heuser JE; Uesugi M; Aiba K; Nakatsuji N Cell Rep; 2012 Nov; 2(5):1448-60. PubMed ID: 23103164 [TBL] [Abstract][Full Text] [Related]
2. A Universal and Robust Integrated Platform for the Scalable Production of Human Cardiomyocytes From Pluripotent Stem Cells. Fonoudi H; Ansari H; Abbasalizadeh S; Larijani MR; Kiani S; Hashemizadeh S; Zarchi AS; Bosman A; Blue GM; Pahlavan S; Perry M; Orr Y; Mayorchak Y; Vandenberg J; Talkhabi M; Winlaw DS; Harvey RP; Aghdami N; Baharvand H Stem Cells Transl Med; 2015 Dec; 4(12):1482-94. PubMed ID: 26511653 [TBL] [Abstract][Full Text] [Related]
3. Xeno-free culture of human pluripotent stem cells. Bergström R; Ström S; Holm F; Feki A; Hovatta O Methods Mol Biol; 2011; 767():125-36. PubMed ID: 21822871 [TBL] [Abstract][Full Text] [Related]
4. Cardiomyocytes derived from human pluripotent stem cells for drug screening. Zeevi-Levin N; Itskovitz-Eldor J; Binah O Pharmacol Ther; 2012 May; 134(2):180-8. PubMed ID: 22269465 [TBL] [Abstract][Full Text] [Related]
5. Defined human pluripotent stem cell culture enables highly efficient neuroepithelium derivation without small molecule inhibitors. Lippmann ES; Estevez-Silva MC; Ashton RS Stem Cells; 2014 Apr; 32(4):1032-42. PubMed ID: 24357014 [TBL] [Abstract][Full Text] [Related]
6. Human cardiomyocyte generation from pluripotent stem cells: A state-of-art. Talkhabi M; Aghdami N; Baharvand H Life Sci; 2016 Jan; 145():98-113. PubMed ID: 26682938 [TBL] [Abstract][Full Text] [Related]
7. Steering signal transduction pathway towards cardiac lineage from human pluripotent stem cells: a review. Verma V; Purnamawati K; Manasi ; Shim W Cell Signal; 2013 May; 25(5):1096-107. PubMed ID: 23415770 [TBL] [Abstract][Full Text] [Related]
8. Production of Cardiomyocytes from Human Pluripotent Stem Cells by Bioreactor Technologies. Halloin C; Coffee M; Manstein F; Zweigerdt R Methods Mol Biol; 2019; 1994():55-70. PubMed ID: 31124104 [TBL] [Abstract][Full Text] [Related]
9. Development of humanized culture medium with plant-derived serum replacement for human pluripotent stem cells. Kunova M; Matulka K; Eiselleova L; Trckova P; Hampl A; Dvorak P Reprod Biomed Online; 2010 Nov; 21(5):676-86. PubMed ID: 20884295 [TBL] [Abstract][Full Text] [Related]
10. Combined activin A/LiCl/Noggin treatment improves production of mouse embryonic stem cell-derived definitive endoderm cells. Li F; He Z; Li Y; Liu P; Chen F; Wang M; Zhu H; Ding X; Wangensteen KJ; Hu Y; Wang X J Cell Biochem; 2011 Apr; 112(4):1022-34. PubMed ID: 21400570 [TBL] [Abstract][Full Text] [Related]
11. Stable propagation of human embryonic and induced pluripotent stem cells on decellularized human substrates. Abraham S; Sheridan SD; Miller B; Rao RR Biotechnol Prog; 2010; 26(4):1126-34. PubMed ID: 20730767 [TBL] [Abstract][Full Text] [Related]
12. Efficient differentiation of cardiomyocytes from human pluripotent stem cells with growth factors. Jha R; Xu RH; Xu C Methods Mol Biol; 2015; 1299():115-31. PubMed ID: 25836579 [TBL] [Abstract][Full Text] [Related]
13. Cardiomyocytes from human pluripotent stem cells in regenerative medicine and drug discovery. Braam SR; Passier R; Mummery CL Trends Pharmacol Sci; 2009 Oct; 30(10):536-45. PubMed ID: 19762090 [TBL] [Abstract][Full Text] [Related]
14. Neural differentiation of mouse embryonic stem cells in chemically defined medium. Bouhon IA; Kato H; Chandran S; Allen ND Brain Res Bull; 2005 Dec; 68(1-2):62-75. PubMed ID: 16325006 [TBL] [Abstract][Full Text] [Related]
15. Cardiomyocyte differentiation of pluripotent stem cells and their use as cardiac disease models. Dambrot C; Passier R; Atsma D; Mummery CL Biochem J; 2011 Feb; 434(1):25-35. PubMed ID: 21269276 [TBL] [Abstract][Full Text] [Related]
16. Generation, expansion, and differentiation of cardiovascular progenitor cells from human pluripotent stem cells. Cao N; Liang H; Yang HT Methods Mol Biol; 2015; 1212():113-25. PubMed ID: 25208753 [TBL] [Abstract][Full Text] [Related]
17. Differentiation and enrichment of cardiomyocytes from human pluripotent stem cells. Xu C J Mol Cell Cardiol; 2012 Jun; 52(6):1203-12. PubMed ID: 22484618 [TBL] [Abstract][Full Text] [Related]
19. Similar pattern in cardiac differentiation of human embryonic stem cell lines, BG01V and ReliCellhES1, under low serum concentration supplemented with bone morphogenetic protein-2. Pal R; Khanna A Differentiation; 2007 Feb; 75(2):112-22. PubMed ID: 17316381 [TBL] [Abstract][Full Text] [Related]
20. Chemical Genetics Reveals a Role of Squalene Synthase in TGFβ Signaling and Cardiomyogenesis. Takemoto Y; Kadota S; Minami I; Otsuka S; Okuda S; Abo M; Punzalan LL; Shen Y; Shiba Y; Uesugi M Angew Chem Int Ed Engl; 2021 Sep; 60(40):21824-21831. PubMed ID: 34374184 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]