These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 23103645)
1. Investigations of the structures and inhibitory properties of intestinal maltase glucoamylase and sucrase isomaltase. Jones K; Eskandari R; Naim HY; Pinto BM; Rose DR J Pediatr Gastroenterol Nutr; 2012 Nov; 55 Suppl 2():S20-4. PubMed ID: 23103645 [No Abstract] [Full Text] [Related]
2. Structural Studies of the Intestinal α-Glucosidases, Maltase-glucoamylase and Sucrase-isomaltase. Rose DR; Chaudet MM; Jones K J Pediatr Gastroenterol Nutr; 2018 Jun; 66 Suppl 3():S11-S13. PubMed ID: 29762369 [TBL] [Abstract][Full Text] [Related]
3. Maltase-glucoamylase modulates gluconeogenesis and sucrase-isomaltase dominates starch digestion glucogenesis. Diaz-Sotomayor M; Quezada-Calvillo R; Avery SE; Chacko SK; Yan LK; Lin AH; Ao ZH; Hamaker BR; Nichols BL J Pediatr Gastroenterol Nutr; 2013 Dec; 57(6):704-12. PubMed ID: 23838818 [TBL] [Abstract][Full Text] [Related]
4. Starch digestion and patients with congenital sucrase-isomaltase deficiency. Hamaker BR; Lee BH; Quezada-Calvillo R J Pediatr Gastroenterol Nutr; 2012 Nov; 55 Suppl 2():S24-8. PubMed ID: 23103646 [No Abstract] [Full Text] [Related]
5. Direct starch digestion by sucrase-isomaltase and maltase-glucoamylase. Lin AH; Hamaker BR; Nichols BL J Pediatr Gastroenterol Nutr; 2012 Nov; 55 Suppl 2():S43-5. PubMed ID: 23103656 [No Abstract] [Full Text] [Related]
6. Inhibition of maltase-glucoamylase activity to hydrolyze α-1,4 linkages by the presence of undigested sucrose. Lee BH; Quezada-Calvillo R; Nichols BL; Rose DR; Hamaker BR J Pediatr Gastroenterol Nutr; 2012 Nov; 55 Suppl 2():S45-7. PubMed ID: 23103657 [No Abstract] [Full Text] [Related]
7. Mapping the intestinal alpha-glucogenic enzyme specificities of starch digesting maltase-glucoamylase and sucrase-isomaltase. Jones K; Sim L; Mohan S; Kumarasamy J; Liu H; Avery S; Naim HY; Quezada-Calvillo R; Nichols BL; Pinto BM; Rose DR Bioorg Med Chem; 2011 Jul; 19(13):3929-34. PubMed ID: 21669536 [TBL] [Abstract][Full Text] [Related]
8. Contribution of the Individual Small Intestinal α-Glucosidases to Digestion of Unusual α-Linked Glycemic Disaccharides. Lee BH; Rose DR; Lin AH; Quezada-Calvillo R; Nichols BL; Hamaker BR J Agric Food Chem; 2016 Aug; 64(33):6487-94. PubMed ID: 27480812 [TBL] [Abstract][Full Text] [Related]
9. Selectivity of 3'-O-methylponkoranol for inhibition of N- and C-terminal maltase glucoamylase and sucrase isomaltase, potential therapeutics for digestive disorders or their sequelae. Eskandari R; Jones K; Rose DR; Pinto BM Bioorg Med Chem Lett; 2011 Nov; 21(21):6491-4. PubMed ID: 21924903 [TBL] [Abstract][Full Text] [Related]
10. Mammalian maltase-glucoamylase and sucrase-isomaltase inhibitory effects of Artocarpus heterophyllus: An in vitro and in silico approach. Abdulhaniff P; Sakayanathan P; Loganathan C; Iruthayaraj A; Thiyagarajan R; Thayumanavan P Comput Biol Chem; 2024 Jun; 110():108052. PubMed ID: 38492557 [TBL] [Abstract][Full Text] [Related]
11. Congenital sucrase-isomaltase deficiency: heterogeneity of inheritance, trafficking, and function of an intestinal enzyme complex. Naim HY; Heine M; Zimmer KP J Pediatr Gastroenterol Nutr; 2012 Nov; 55 Suppl 2():S13-20. PubMed ID: 23103643 [No Abstract] [Full Text] [Related]
12. Studies on the intestinal disaccharidases of the pigeon. III. Separation, purification and properties of sucrase-isomaltase and maltase-glucoamylase. Prakash K; Patil SD; Hegde SN Arch Int Physiol Biochim; 1983 Dec; 91(5):379-90. PubMed ID: 6204606 [TBL] [Abstract][Full Text] [Related]
13. [Structure and evolution of mammalian maltase-glucoamylase and sucrase-isomaltase genes]. Naumov DG Mol Biol (Mosk); 2007; 41(6):1056-68. PubMed ID: 18318124 [TBL] [Abstract][Full Text] [Related]
14. Probing the intestinal α-glucosidase enzyme specificities of starch-digesting maltase-glucoamylase and sucrase-isomaltase: synthesis and inhibitory properties of 3'- and 5'-maltose-extended de-O-sulfonated ponkoranol. Eskandari R; Jones K; Reddy KR; Jayakanthan K; Chaudet M; Rose DR; Pinto BM Chemistry; 2011 Dec; 17(52):14817-25. PubMed ID: 22127878 [TBL] [Abstract][Full Text] [Related]
15. Demonstration of sucrase-isomaltase complex in chick intestine. Mizuno K; Moriuchi S; Hosoya N J Nutr Sci Vitaminol (Tokyo); 1982 Dec; 28(6):599-608. PubMed ID: 6762409 [TBL] [Abstract][Full Text] [Related]
16. Posttranslational Processing and Function of Mucosal Maltases. Amiri M; Naim HY J Pediatr Gastroenterol Nutr; 2018 Jun; 66 Suppl 3():S18-S23. PubMed ID: 29762371 [TBL] [Abstract][Full Text] [Related]
18. The membrane-bound intestinal enzymes of waxwings and thrushes: adaptive and functional implications of patterns of enzyme activity. Witmer MC; Martínez del Rio C Physiol Biochem Zool; 2001; 74(4):584-93. PubMed ID: 11436143 [TBL] [Abstract][Full Text] [Related]
19. Dietary phenolic compounds selectively inhibit the individual subunits of maltase-glucoamylase and sucrase-isomaltase with the potential of modulating glucose release. Simsek M; Quezada-Calvillo R; Ferruzzi MG; Nichols BL; Hamaker BR J Agric Food Chem; 2015 Apr; 63(15):3873-9. PubMed ID: 25816913 [TBL] [Abstract][Full Text] [Related]
20. Disaccharidase activities in camel small intestine: biochemical investigations of maltase-glucoamylase activity. Mohamed SA; Fahmy AS; Salah HA Comp Biochem Physiol B Biochem Mol Biol; 2007 Jan; 146(1):124-30. PubMed ID: 17098455 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]