BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 23103748)

  • 1. Synthesis, copolymerization and peptide-modification of carboxylic acid-functionalized 3,4-ethylenedioxythiophene (EDOTacid) for neural electrode interfaces.
    Povlich LK; Cho JC; Leach MK; Corey JM; Kim J; Martin DC
    Biochim Biophys Acta; 2013 Sep; 1830(9):4288-93. PubMed ID: 23103748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biofunctionalization of PEDOT films with laminin-derived peptides.
    Bhagwat N; Murray RE; Shah SI; Kiick KL; Martin DC
    Acta Biomater; 2016 Sep; 41():235-46. PubMed ID: 27181880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poly(3,4-ethylenedioxythiophene):GlycosAminoGlycan Aqueous Dispersions: Toward Electrically Conductive Bioactive Materials for Neural Interfaces.
    Mantione D; Del Agua I; Schaafsma W; Diez-Garcia J; Castro B; Sardon H; Mecerreyes D
    Macromol Biosci; 2016 Aug; 16(8):1227-38. PubMed ID: 27168277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polymerization of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) around living neural cells.
    Richardson-Burns SM; Hendricks JL; Foster B; Povlich LK; Kim DH; Martin DC
    Biomaterials; 2007 Mar; 28(8):1539-52. PubMed ID: 17169420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Poly(3,4-ethylenedioxythiophene) (PEDOT) nanobiointerfaces: thin, ultrasmooth, and functionalized PEDOT films with in vitro and in vivo biocompatibility.
    Luo SC; Mohamed Ali E; Tansil NC; Yu HH; Gao S; Kantchev EA; Ying JY
    Langmuir; 2008 Aug; 24(15):8071-7. PubMed ID: 18588322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Significant enhancement of PEDOT thin film adhesion to inorganic solid substrates with EDOT-acid.
    Wei B; Liu J; Ouyang L; Kuo CC; Martin DC
    ACS Appl Mater Interfaces; 2015 Jul; 7(28):15388-94. PubMed ID: 26052833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct local polymerization of poly(3,4-ethylenedioxythiophene) in rat cortex.
    Ouyang L; Green R; Feldman KE; Martin DC
    Prog Brain Res; 2011; 194():263-71. PubMed ID: 21867810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-Dimensional BC/PEDOT Composite Nanofibers with High Performance for Electrode-Cell Interface.
    Chen C; Zhang T; Zhang Q; Feng Z; Zhu C; Yu Y; Li K; Zhao M; Yang J; Liu J; Sun D
    ACS Appl Mater Interfaces; 2015 Dec; 7(51):28244-53. PubMed ID: 26550840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT) in rodent cerebral cortex.
    Wilks SJ; Woolley AJ; Ouyang L; Martin DC; Otto KJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5412-5. PubMed ID: 22255561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioelectronics meets nanomedicine for cardiovascular implants: PEDOT-based nanocoatings for tissue regeneration.
    Karagkiozaki V; Karagiannidis PG; Gioti M; Kavatzikidou P; Georgiou D; Georgaraki E; Logothetidis S
    Biochim Biophys Acta; 2013 Sep; 1830(9):4294-304. PubMed ID: 23291427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly(3,4-ethylenedioxythiophene) (PEDOT) film.
    Ludwig KA; Uram JD; Yang J; Martin DC; Kipke DR
    J Neural Eng; 2006 Mar; 3(1):59-70. PubMed ID: 16510943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical fabrication of conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) nanofibrils on microfabricated neural prosthetic devices.
    Yang J; Lipkin K; Martin DC
    J Biomater Sci Polym Ed; 2007; 18(8):1075-89. PubMed ID: 17705999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication and characterization of conductive poly (3,4-ethylenedioxythiophene) doped with hyaluronic acid/poly (l-lactic acid) composite film for biomedical application.
    Wang S; Guan S; Wang J; Liu H; Liu T; Ma X; Cui Z
    J Biosci Bioeng; 2017 Jan; 123(1):116-125. PubMed ID: 27498308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical polymerization of conducting polymers in living neural tissue.
    Richardson-Burns SM; Hendricks JL; Martin DC
    J Neural Eng; 2007 Jun; 4(2):L6-L13. PubMed ID: 17409471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and characterization of bicontinuous cubic poly(3,4-ethylene dioxythiophene) gyroid (PEDOT GYR) gels.
    Cho W; Wu J; Shim BS; Kuan WF; Mastroianni SE; Young WS; Kuo CC; Epps TH; Martin DC
    Phys Chem Chem Phys; 2015 Feb; 17(7):5115-23. PubMed ID: 25600651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell attachment functionality of bioactive conducting polymers for neural interfaces.
    Green RA; Lovell NH; Poole-Warren LA
    Biomaterials; 2009 Aug; 30(22):3637-44. PubMed ID: 19375160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-function study of poly(sulfobetaine 3,4-ethylenedioxythiophene) (PSBEDOT) and its derivatives.
    Lee CJ; Wang H; Young M; Li S; Cheng F; Cong H; Cheng G
    Acta Biomater; 2018 Jul; 75():161-170. PubMed ID: 29879552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controllable optical, electrical, and morphologic properties of 3,4-ethylenedioxythiophene based electrocopolymerization films.
    Gu C; Liu H; Hu D; Zhang W; Lv Y; Lu P; Lu D; Ma Y
    Macromol Rapid Commun; 2011 Jul; 32(13):1014-9. PubMed ID: 21644242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chronic In Vivo Evaluation of PEDOT/CNT for Stable Neural Recordings.
    Kozai TD; Catt K; Du Z; Na K; Srivannavit O; Haque RU; Seymour J; Wise KD; Yoon E; Cui XT
    IEEE Trans Biomed Eng; 2016 Jan; 63(1):111-9. PubMed ID: 26087481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stiffness, strength and adhesion characterization of electrochemically deposited conjugated polymer films.
    Qu J; Ouyang L; Kuo CC; Martin DC
    Acta Biomater; 2016 Feb; 31():114-121. PubMed ID: 26607768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.