These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 23103878)
1. Water-soluble graphene grafted by poly(sodium 4-styrenesulfonate) for enhancement of electric capacitance. Du FP; Wang JJ; Tang CY; Tsui CP; Zhou XP; Xie XL; Liao YG Nanotechnology; 2012 Nov; 23(47):475704. PubMed ID: 23103878 [TBL] [Abstract][Full Text] [Related]
2. Facile method for the preparation of water dispersible graphene using sulfonated poly(ether-ether-ketone) and its application as energy storage materials. Kuila T; Mishra AK; Khanra P; Kim NH; Uddin ME; Lee JH Langmuir; 2012 Jun; 28(25):9825-33. PubMed ID: 22646229 [TBL] [Abstract][Full Text] [Related]
3. Thermal treatment effects on charge storage performance of graphene-based materials for supercapacitors. Zhang H; Bhat VV; Gallego NC; Contescu CI ACS Appl Mater Interfaces; 2012 Jun; 4(6):3239-46. PubMed ID: 22680779 [TBL] [Abstract][Full Text] [Related]
4. Glycol assisted synthesis of graphene-MnO2-polyaniline ternary composites for high performance supercapacitor electrodes. Mu B; Zhang W; Shao S; Wang A Phys Chem Chem Phys; 2014 May; 16(17):7872-80. PubMed ID: 24643731 [TBL] [Abstract][Full Text] [Related]
6. Enhanced Specific Capacitance of Few-Layer MoS₂ Nanosheets via SDBS-Assisted Hydrothermal Method. Bai LZ; Li F; An D; Wei JF; Zhang ZY; Liu YQ J Nanosci Nanotechnol; 2018 Mar; 18(3):1804-1810. PubMed ID: 29448663 [TBL] [Abstract][Full Text] [Related]
7. Nanocomposites of sulfonic polyaniline nanoarrays on graphene nanosheets with an improved supercapacitor performance. Zhao HB; Yang J; Lin TT; Lü QF; Chen G Chemistry; 2015 Jan; 21(2):682-90. PubMed ID: 25399735 [TBL] [Abstract][Full Text] [Related]
8. 7,7,8,8-Tetracyanoquinodimethane-assisted one-step electrochemical exfoliation of graphite and its performance as an electrode material. Khanra P; Lee CN; Kuila T; Kim NH; Park MJ; Lee JH Nanoscale; 2014 May; 6(9):4864-73. PubMed ID: 24668420 [TBL] [Abstract][Full Text] [Related]
9. In situ electrochemical polymerization of a nanorod-PANI-Graphene composite in a reverse micelle electrolyte and its application in a supercapacitor. Hu L; Tu J; Jiao S; Hou J; Zhu H; Fray DJ Phys Chem Chem Phys; 2012 Dec; 14(45):15652-6. PubMed ID: 23076399 [TBL] [Abstract][Full Text] [Related]
10. Flexible pillared graphene-paper electrodes for high-performance electrochemical supercapacitors. Wang G; Sun X; Lu F; Sun H; Yu M; Jiang W; Liu C; Lian J Small; 2012 Feb; 8(3):452-9. PubMed ID: 22162371 [TBL] [Abstract][Full Text] [Related]
11. Synthesis of adenine-modified reduced graphene oxide nanosheets. Cao H; Wu X; Yin G; Warner JH Inorg Chem; 2012 Mar; 51(5):2954-60. PubMed ID: 22356685 [TBL] [Abstract][Full Text] [Related]
12. Supercapacitor electrodes with especially high rate capability and cyclability based on a novel Pt nanosphere and cysteine-generated graphene. Zhang D; Zhang X; Chen Y; Wang C; Ma Y; Dong H; Jiang L; Meng Q; Hu W Phys Chem Chem Phys; 2012 Aug; 14(31):10899-903. PubMed ID: 22772748 [TBL] [Abstract][Full Text] [Related]
13. Electrochemical performance of a graphene-polypyrrole nanocomposite as a supercapacitor electrode. Bose S; Kim NH; Kuila T; Lau KT; Lee JH Nanotechnology; 2011 Jul; 22(29):295202. PubMed ID: 21680965 [TBL] [Abstract][Full Text] [Related]
14. Facile synthesis of graphene-wrapped honeycomb MnO2 nanospheres and their application in supercapacitors. Zhu J; He J ACS Appl Mater Interfaces; 2012 Mar; 4(3):1770-6. PubMed ID: 22329919 [TBL] [Abstract][Full Text] [Related]
15. β-Cobalt sulfide nanoparticles decorated graphene composite electrodes for high capacity and power supercapacitors. Qu B; Chen Y; Zhang M; Hu L; Lei D; Lu B; Li Q; Wang Y; Chen L; Wang T Nanoscale; 2012 Dec; 4(24):7810-6. PubMed ID: 23147355 [TBL] [Abstract][Full Text] [Related]
16. The synthesis and fluorescence quenching properties of well soluble hybrid graphene material covalently functionalized with indolizine. Wu X; Cao H; Li B; Yin G Nanotechnology; 2011 Feb; 22(7):075202. PubMed ID: 21233551 [TBL] [Abstract][Full Text] [Related]
17. Covalent surface modification of chemically derived graphene and its application as supercapacitor electrode material. Jana M; Khanra P; Murmu NC; Samanta P; Lee JH; Kuila T Phys Chem Chem Phys; 2014 Apr; 16(16):7618-26. PubMed ID: 24643242 [TBL] [Abstract][Full Text] [Related]
18. LiNi₁/₃Co₁/₃Mn₁/₃O₂-graphene composite as a promising cathode for lithium-ion batteries. Venkateswara Rao C; Leela Mohana Reddy A; Ishikawa Y; Ajayan PM ACS Appl Mater Interfaces; 2011 Aug; 3(8):2966-72. PubMed ID: 21714504 [TBL] [Abstract][Full Text] [Related]
19. High-performance supercapacitor electrodes based on graphene hydrogels modified with 2-aminoanthraquinone moieties. Wu Q; Sun Y; Bai H; Shi G Phys Chem Chem Phys; 2011 Jun; 13(23):11193-8. PubMed ID: 21562653 [TBL] [Abstract][Full Text] [Related]
20. Flexible conducting polymer/reduced graphene oxide films: synthesis, characterization, and electrochemical performance. Yang W; Zhao Y; He X; Chen Y; Xu J; Li S; Yang Y; Jiang Y Nanoscale Res Lett; 2015; 10():222. PubMed ID: 26019698 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]