BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 23103942)

  • 1. O-GlcNAc transferase invokes nucleotide sugar pyrophosphate participation in catalysis.
    Schimpl M; Zheng X; Borodkin VS; Blair DE; Ferenbach AT; Schüttelkopf AW; Navratilova I; Aristotelous T; Albarbarawi O; Robinson DA; Macnaughtan MA; van Aalten DM
    Nat Chem Biol; 2012 Dec; 8(12):969-74. PubMed ID: 23103942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The active site of O-GlcNAc transferase imposes constraints on substrate sequence.
    Pathak S; Alonso J; Schimpl M; Rafie K; Blair DE; Borodkin VS; Albarbarawi O; van Aalten DMF
    Nat Struct Mol Biol; 2015 Sep; 22(9):744-750. PubMed ID: 26237509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A neutral diphosphate mimic crosslinks the active site of human O-GlcNAc transferase.
    Jiang J; Lazarus MB; Pasquina L; Sliz P; Walker S
    Nat Chem Biol; 2011 Nov; 8(1):72-7. PubMed ID: 22082911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrophilic probes for deciphering substrate recognition by O-GlcNAc transferase.
    Hu CW; Worth M; Fan D; Li B; Li H; Lu L; Zhong X; Lin Z; Wei L; Ge Y; Li L; Jiang J
    Nat Chem Biol; 2017 Dec; 13(12):1267-1273. PubMed ID: 29058723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel bisubstrate uridine-peptide analogues bearing a pyrophosphate bioisostere as inhibitors of human O-GlcNAc transferase.
    Ryan P; Shi Y; von Itzstein M; Rudrawar S
    Bioorg Chem; 2021 May; 110():104738. PubMed ID: 33667901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural snapshots of the reaction coordinate for O-GlcNAc transferase.
    Lazarus MB; Jiang J; Gloster TM; Zandberg WF; Whitworth GE; Vocadlo DJ; Walker S
    Nat Chem Biol; 2012 Dec; 8(12):966-8. PubMed ID: 23103939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substrate specificity provides insights into the sugar donor recognition mechanism of O-GlcNAc transferase (OGT).
    Ma X; Liu P; Yan H; Sun H; Liu X; Zhou F; Li L; Chen Y; Muthana MM; Chen X; Wang PG; Zhang L
    PLoS One; 2013; 8(5):e63452. PubMed ID: 23700425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feedback Regulation of
    Lin CH; Liao CC; Chen MY; Chou TY
    Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33801653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic Promiscuity of O-GlcNAc Transferase Enables Unexpected Metabolic Engineering of Cytoplasmic Proteins with 2-Azido-2-deoxy-glucose.
    Shen DL; Liu TW; Zandberg W; Clark T; Eskandari R; Alteen MG; Tan HY; Zhu Y; Cecioni S; Vocadlo D
    ACS Chem Biol; 2017 Jan; 12(1):206-213. PubMed ID: 27935279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recognition of a glycosylation substrate by the O-GlcNAc transferase TPR repeats.
    Rafie K; Raimi O; Ferenbach AT; Borodkin VS; Kapuria V; van Aalten DMF
    Open Biol; 2017 Jun; 7(6):. PubMed ID: 28659383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural insights into mechanism and specificity of O-GlcNAc transferase.
    Clarke AJ; Hurtado-Guerrero R; Pathak S; Schüttelkopf AW; Borodkin V; Shepherd SM; Ibrahim AF; van Aalten DM
    EMBO J; 2008 Oct; 27(20):2780-8. PubMed ID: 18818698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bisubstrate UDP-peptide conjugates as human O-GlcNAc transferase inhibitors.
    Borodkin VS; Schimpl M; Gundogdu M; Rafie K; Dorfmueller HC; Robinson DA; van Aalten DM
    Biochem J; 2014 Feb; 457(3):497-502. PubMed ID: 24256146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. O-GlcNAc transferase inhibitors: current tools and future challenges.
    Trapannone R; Rafie K; van Aalten DM
    Biochem Soc Trans; 2016 Feb; 44(1):88-93. PubMed ID: 26862193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elucidating the protein substrate recognition of O-GlcNAc transferase (OGT) toward O-GlcNAcase (OGA) using a GlcNAc electrophilic probe.
    Kositzke A; Fan D; Wang A; Li H; Worth M; Jiang J
    Int J Biol Macromol; 2021 Feb; 169():51-59. PubMed ID: 33333092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced transfer of a photocross-linking N-acetylglucosamine (GlcNAc) analog by an O-GlcNAc transferase mutant with converted substrate specificity.
    Rodriguez AC; Yu SH; Li B; Zegzouti H; Kohler JJ
    J Biol Chem; 2015 Sep; 290(37):22638-48. PubMed ID: 26240142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights into O-linked N-acetylglucosamine ([0-9]O-GlcNAc) processing and dynamics through kinetic analysis of O-GlcNAc transferase and O-GlcNAcase activity on protein substrates.
    Shen DL; Gloster TM; Yuzwa SA; Vocadlo DJ
    J Biol Chem; 2012 May; 287(19):15395-408. PubMed ID: 22311971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cross-talk between two essential nutrient-sensitive enzymes: O-GlcNAc transferase (OGT) and AMP-activated protein kinase (AMPK).
    Bullen JW; Balsbaugh JL; Chanda D; Shabanowitz J; Hunt DF; Neumann D; Hart GW
    J Biol Chem; 2014 Apr; 289(15):10592-10606. PubMed ID: 24563466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Roles of the tetratricopeptide repeat domain in O-GlcNAc transferase targeting and protein substrate specificity.
    Iyer SP; Hart GW
    J Biol Chem; 2003 Jul; 278(27):24608-16. PubMed ID: 12724313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uridine diphosphate release mechanism in O-N-acetylglucosamine (O-GlcNAc) transferase catalysis.
    She N; Zhao Y; Hao J; Xie S; Wang C
    Biochim Biophys Acta Gen Subj; 2019 Mar; 1863(3):609-622. PubMed ID: 30550897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of human O-GlcNAc transferase and its complex with a peptide substrate.
    Lazarus MB; Nam Y; Jiang J; Sliz P; Walker S
    Nature; 2011 Jan; 469(7331):564-7. PubMed ID: 21240259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.