These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 23104002)

  • 1. Dynamic groundwater monitoring networks: a manageable method for reviewing sampling frequency.
    Moreau-Fournier MF; Daughney CJ
    J Environ Monit; 2012 Dec; 14(12):3129-36. PubMed ID: 23104002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Bayesian maximum entropy-based methodology for optimal spatiotemporal design of groundwater monitoring networks.
    Hosseini M; Kerachian R
    Environ Monit Assess; 2017 Sep; 189(9):433. PubMed ID: 28779429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Marine monitoring: Its shortcomings and mismatch with the EU Water Framework Directive's objectives.
    de Jonge VN; Elliott M; Brauer VS
    Mar Pollut Bull; 2006; 53(1-4):5-19. PubMed ID: 16426645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the possibility for phytoplankton monitoring frequency reduction in the coastal waters of the Community of Valencia, in the scope of the Water Framework Directive.
    Abramic A; Del Rio JG; Martínez-Alzamora N; Ferrer J
    Mar Pollut Bull; 2012 Aug; 64(8):1637-47. PubMed ID: 22704148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cost-effective sampling network design for contaminant plume monitoring under general hydrogeological conditions.
    Wu J; Zheng C; Chien CC
    J Contam Hydrol; 2005 Mar; 77(1-2):41-65. PubMed ID: 15722172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new design of groundwater sampling device and its application.
    Tsai YJ; Kuo MC
    J Environ Sci (China); 2005; 17(5):838-41. PubMed ID: 16313014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of methods for the detection and extrapolation of trends in groundwater quality.
    Visser A; Dubus I; Broers HP; Brouyère S; Korcz M; Orban P; Goderniaux P; Batlle-Aguilar J; Surdyk N; Amraoui N; Job H; Pinault JL; Bierkens M
    J Environ Monit; 2009 Nov; 11(11):2030-43. PubMed ID: 19890560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The London low emission zone baseline study.
    Kelly F; Armstrong B; Atkinson R; Anderson HR; Barratt B; Beevers S; Cook D; Green D; Derwent D; Mudway I; Wilkinson P;
    Res Rep Health Eff Inst; 2011 Nov; (163):3-79. PubMed ID: 22315924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal design of monitoring networks for multiple groundwater quality parameters using a Kalman filter: application to the Irapuato-Valle aquifer.
    Júnez-Ferreira HE; Herrera GS; González-Hita L; Cardona A; Mora-Rodríguez J
    Environ Monit Assess; 2016 Jan; 188(1):39. PubMed ID: 26681183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Statistical approaches used to assess and redesign surface water-quality-monitoring networks.
    Khalil B; Ouarda TB
    J Environ Monit; 2009 Nov; 11(11):1915-29. PubMed ID: 19890548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)--a case study.
    Singh KP; Malik A; Mohan D; Sinha S
    Water Res; 2004 Nov; 38(18):3980-92. PubMed ID: 15380988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Report on EU guidance on groundwater monitoring developed under the common implementation strategy of the water framework directive.
    Grath J; Ward R; Scheidleder A; Quevauviller P
    J Environ Monit; 2007 Nov; 9(11):1162-75. PubMed ID: 17968442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A methodology for space-time classification of groundwater quality.
    Passarella G; Caputo MC
    Environ Monit Assess; 2006 Apr; 115(1-3):95-117. PubMed ID: 16502022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of water quality of polluted lake using multivariate statistical techniques: a case study.
    Kazi TG; Arain MB; Jamali MK; Jalbani N; Afridi HI; Sarfraz RA; Baig JA; Shah AQ
    Ecotoxicol Environ Saf; 2009 Feb; 72(2):301-9. PubMed ID: 18423587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Groundwater environmental capacity and its evaluation index.
    Xing LT; Wu Q; Ye CH; Ye N
    Environ Monit Assess; 2010 Oct; 169(1-4):217-27. PubMed ID: 19763854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimal groundwater contamination monitoring using pumping wells.
    Shlomi S; Ostfeld A; Rubin H; Shoemaker C
    Water Sci Technol; 2010; 62(3):556-69. PubMed ID: 20706003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous monitoring in sewer networks an approach for quantification of pollution loads from CSOs into surface water bodies.
    Gruber G; Winkler S; Pressl A
    Water Sci Technol; 2005; 52(12):215-23. PubMed ID: 16477989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial-temporal assessment and redesign of groundwater quality monitoring network: a case study.
    Owlia RR; Abrishamchi A; Tajrishy M
    Environ Monit Assess; 2011 Jan; 172(1-4):263-73. PubMed ID: 20180017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of river water quality sampling methodologies under highly variable load conditions.
    Facchi A; Gandolfi C; Whelan MJ
    Chemosphere; 2007 Jan; 66(4):746-56. PubMed ID: 17007904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Groundwater monitoring plans at small-scale sites--an innovative spatial and temporal methodology.
    Ling M; Rifai HS; Newell CJ; Aziz JJ; Gonzales JR
    J Environ Monit; 2003 Feb; 5(1):126-34. PubMed ID: 12619767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.