These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
88 related articles for article (PubMed ID: 23104020)
1. On designing stable magnetic vectors as carriers for malaria DNA vaccine. Al-Deen FN; Selomulya C; Williams T Colloids Surf B Biointerfaces; 2013 Feb; 102():492-503. PubMed ID: 23104020 [TBL] [Abstract][Full Text] [Related]
2. Superparamagnetic nanoparticles for effective delivery of malaria DNA vaccine. Al-Deen FN; Ho J; Selomulya C; Ma C; Coppel R Langmuir; 2011 Apr; 27(7):3703-12. PubMed ID: 21361304 [TBL] [Abstract][Full Text] [Related]
3. Assembly of polyethylenimine-based magnetic iron oxide vectors: insights into gene delivery. Arsianti M; Lim M; Marquis CP; Amal R Langmuir; 2010 May; 26(10):7314-26. PubMed ID: 20112951 [TBL] [Abstract][Full Text] [Related]
4. Design of magnetic polyplexes taken up efficiently by dendritic cell for enhanced DNA vaccine delivery. Nawwab Al-Deen FM; Selomulya C; Kong YY; Xiang SD; Ma C; Coppel RL; Plebanski M Gene Ther; 2014 Feb; 21(2):212-8. PubMed ID: 24352195 [TBL] [Abstract][Full Text] [Related]
5. On the efficacy of malaria DNA vaccination with magnetic gene vectors. Nawwab Al-Deen F; Ma C; Xiang SD; Selomulya C; Plebanski M; Coppel RL J Control Release; 2013 May; 168(1):10-7. PubMed ID: 23500060 [TBL] [Abstract][Full Text] [Related]
6. Effect of nanoparticle coating on the immunogenicity of plasmid DNA vaccine encoding P. yoelii MSP-1 C-terminal. Shuaibu MN; Cherif MS; Kurosaki T; Helegbe GK; Kikuchi M; Yanagi T; Sasaki H; Hirayama K Vaccine; 2011 Apr; 29(17):3239-47. PubMed ID: 21354479 [TBL] [Abstract][Full Text] [Related]
7. Production, characterisation and immunogenicity of a plant-made Plasmodium antigen--the 19 kDa C-terminal fragment of Plasmodium yoelii merozoite surface protein 1. Ma C; Wang L; Webster DE; Campbell AE; Coppel RL Appl Microbiol Biotechnol; 2012 Apr; 94(1):151-61. PubMed ID: 22170105 [TBL] [Abstract][Full Text] [Related]
8. Immunogenicity of novel nanoparticle-coated MSP-1 C-terminus malaria DNA vaccine using different routes of administration. Cherif MS; Shuaibu MN; Kurosaki T; Helegbe GK; Kikuchi M; Yanagi T; Tsuboi T; Sasaki H; Hirayama K Vaccine; 2011 Nov; 29(48):9038-50. PubMed ID: 21939717 [TBL] [Abstract][Full Text] [Related]
9. Polyethylenimine based magnetic iron-oxide vector: the effect of vector component assembly on cellular entry mechanism, intracellular localization, and cellular viability. Arsianti M; Lim M; Marquis CP; Amal R Biomacromolecules; 2010 Sep; 11(9):2521-31. PubMed ID: 20712360 [TBL] [Abstract][Full Text] [Related]
10. Effect of cell media on polymer coated superparamagnetic iron oxide nanoparticles (SPIONs): colloidal stability, cytotoxicity, and cellular uptake studies. Petri-Fink A; Steitz B; Finka A; Salaklang J; Hofmann H Eur J Pharm Biopharm; 2008 Jan; 68(1):129-37. PubMed ID: 17881203 [TBL] [Abstract][Full Text] [Related]
11. Superparamagnetic nanoparticle delivery of DNA vaccine. Al-Deen FN; Selomulya C; Ma C; Coppel RL Methods Mol Biol; 2014; 1143():181-94. PubMed ID: 24715289 [TBL] [Abstract][Full Text] [Related]
12. Magnetic Nanovectors for the Development of DNA Blood-Stage Malaria Vaccines. Al-Deen FM; Xiang SD; Ma C; Wilson K; Coppel RL; Selomulya C; Plebanski M Nanomaterials (Basel); 2017 Feb; 7(2):. PubMed ID: 28336871 [TBL] [Abstract][Full Text] [Related]
13. Low molecular weight linear polyethylenimine-b-poly(ethylene glycol)-b-polyethylenimine triblock copolymers: synthesis, characterization, and in vitro gene transfer properties. Zhong Z; Feijen J; Lok MC; Hennink WE; Christensen LV; Yockman JW; Kim YH; Kim SW Biomacromolecules; 2005; 6(6):3440-8. PubMed ID: 16283777 [TBL] [Abstract][Full Text] [Related]
14. Poly(ethylene oxide) grafted with short polyethylenimine gives DNA polyplexes with superior colloidal stability, low cytotoxicity, and potent in vitro gene transfection under serum conditions. Zheng M; Zhong Z; Zhou L; Meng F; Peng R; Zhong Z Biomacromolecules; 2012 Mar; 13(3):881-8. PubMed ID: 22339316 [TBL] [Abstract][Full Text] [Related]
15. Disassembly of polyethylenimine-DNA particles in vitro: implications for polyethylenimine-mediated DNA delivery. Bertschinger M; Backliwal G; Schertenleib A; Jordan M; Hacker DL; Wurm FM J Control Release; 2006 Nov; 116(1):96-104. PubMed ID: 17079047 [TBL] [Abstract][Full Text] [Related]
16. Microparticle-mediated gene delivery for the enhanced expression of a 19-kDa fragment of merozoite surface protein 1 of Plasmodium falciparum. Liu S; Danquah MK; Forde GM; Ma C; Wang L; Coppel R Biotechnol Prog; 2010; 26(1):257-62. PubMed ID: 19924768 [TBL] [Abstract][Full Text] [Related]
17. Vaccination Strategies against Malaria: novel carrier(s) more than a tour de force. Tyagi RK; Garg NK; Sahu T J Control Release; 2012 Aug; 162(1):242-54. PubMed ID: 22564369 [TBL] [Abstract][Full Text] [Related]
18. Different behavior of branched and linear polyethylenimine for gene delivery in vitro and in vivo. Wightman L; Kircheis R; Rössler V; Carotta S; Ruzicka R; Kursa M; Wagner E J Gene Med; 2001; 3(4):362-72. PubMed ID: 11529666 [TBL] [Abstract][Full Text] [Related]
19. Bacterial magnetic particles (BMPs)-PEI as a novel and efficient non-viral gene delivery system. Xiang L; Bin W; Huali J; Wei J; Jiesheng T; Feng G; Ying L J Gene Med; 2007 Aug; 9(8):679-90. PubMed ID: 17605136 [TBL] [Abstract][Full Text] [Related]
20. Preliminary characterization of N-trimethylchitosan as a nanocarrier for malaria vaccine. Nnamani PO; Scoles G; Kröl S J Vector Borne Dis; 2011 Dec; 48(4):224-30. PubMed ID: 22297285 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]