These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 23104105)

  • 1. Pore formation in lipid bilayer membranes made of phosphatidylcholine and cholesterol followed by means of constant current.
    Naumowicz M; Figaszewski ZA
    Cell Biochem Biophys; 2013 May; 66(1):109-19. PubMed ID: 23104105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chronopotentiometric technique as a method for electrical characterization of bilayer lipid membranes.
    Naumowicz M; Figaszewski ZA
    J Membr Biol; 2011 Mar; 240(1):47-53. PubMed ID: 21249348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chronopotentiometric studies of phosphatidylcholine bilayers modified by ergosterol.
    Naumowicz M; Petelska AD; Figaszewski ZA
    Steroids; 2011; 76(10-11):967-73. PubMed ID: 21641920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Capacitance and resistance of the bilayer lipid membrane formed of phosphatidylcholine and cholesterol.
    Naumowicz M; Petelska AD; Figaszewski ZA
    Cell Mol Biol Lett; 2003; 8(1):5-18. PubMed ID: 12655351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of cholesterol on electroporation of bilayer lipid membranes: chronopotentiometric studies.
    Koronkiewicz S; Kalinowski S
    Biochim Biophys Acta; 2004 Mar; 1661(2):196-203. PubMed ID: 15003882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Programmable chronopotentiometry as a tool for the study of electroporation and resealing of pores in bilayer lipid membranes.
    Koronkiewicz S; Kalinowski S; Bryl K
    Biochim Biophys Acta; 2002 Apr; 1561(2):222-9. PubMed ID: 11997122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of the cholesterol on electroporation of planar lipid bilayer.
    Kramar P; Miklavčič D
    Bioelectrochemistry; 2022 Apr; 144():108004. PubMed ID: 34864271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes of structural and dynamic properties of model lipid membranes induced by alpha-tocopherol: implication to the membrane stabilization under external electric field.
    Koronkiewicz S; Kalinowski S; Bryl K
    Biochim Biophys Acta; 2001 Feb; 1510(1-2):300-6. PubMed ID: 11342167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cholesterol favors the emergence of a long-range autocorrelated fluctuation pattern in voltage-induced ionic currents through lipid bilayers.
    Corvalán NA; Kembro JM; Clop PD; Perillo MA
    Biochim Biophys Acta; 2013 Aug; 1828(8):1754-64. PubMed ID: 23545220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The interfacial tension of the lipid membrane formed from lipid-cholesterol and lipid-lipid systems.
    Petelska AD; Naumowicz M; Figaszewski ZA
    Cell Biochem Biophys; 2006; 44(2):205-11. PubMed ID: 16456222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chronopotentiometric studies of electroporation of bilayer lipid membranes.
    Kalinowski S; Ibron G; Bryl K; Figaszewski Z
    Biochim Biophys Acta; 1998 Mar; 1369(2):204-12. PubMed ID: 9518614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and kinetic molecular dynamics study of electroporation in cholesterol-containing bilayers.
    Fernández ML; Marshall G; Sagués F; Reigada R
    J Phys Chem B; 2010 May; 114(20):6855-65. PubMed ID: 20429602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Addition of Cleaved Tail Fragments during Lipid Oxidation Stabilizes Membrane Permeability Behavior.
    Runas KA; Acharya SJ; Schmidt JJ; Malmstadt N
    Langmuir; 2016 Jan; 32(3):779-86. PubMed ID: 26704691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct in situ measurement of specific capacitance, monolayer tension, and bilayer tension in a droplet interface bilayer.
    Taylor GJ; Venkatesan GA; Collier CP; Sarles SA
    Soft Matter; 2015 Oct; 11(38):7592-605. PubMed ID: 26289743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential effects of cholesterol and oxidised-cholesterol in egg lecithin bilayers.
    Karolis C; Coster HG; Chilcott TC; Barrow KD
    Biochim Biophys Acta; 1998 Jan; 1368(2):247-55. PubMed ID: 9459602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of dimethyl sulfoxide on lipid membrane electroporation.
    Fernández ML; Reigada R
    J Phys Chem B; 2014 Aug; 118(31):9306-12. PubMed ID: 25035931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of K7Fe3+P2W17O62H2 with supported bilayer lipid membranes on platinum electrode.
    Wang J; Wang L; Liu S; Han X; Huang W; Wang E
    Biophys Chem; 2003 Oct; 106(1):31-8. PubMed ID: 14516910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of pH on the electrical capacitance of phosphatidylcholine-phosphatidylserine system in bilayer lipid membrane.
    Naumowicz M; Figaszewski ZA
    J Membr Biol; 2014 Apr; 247(4):361-9. PubMed ID: 24577415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of undecaprenol on bilayer lipid membranes.
    Janas T; Chojnacki T; Swiezewska E; Janas T
    Acta Biochim Pol; 1994; 41(3):351-8. PubMed ID: 7856407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electroporation threshold of POPC lipid bilayers with incorporated polyoxyethylene glycol (C12E8).
    Polak A; Velikonja A; Kramar P; Tarek M; Miklavčič D
    J Phys Chem B; 2015 Jan; 119(1):192-200. PubMed ID: 25495217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.