These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 23104107)
21. Functional response of Euseius concordis to densities of different developmental stages of the cassava green mite. Costa EC; Teodoro AV; Rêgo AS; Pedro-Neto M; Sarmento RA Exp Appl Acarol; 2014 Nov; 64(3):277-86. PubMed ID: 24867060 [TBL] [Abstract][Full Text] [Related]
22. Scaling up tests on virulence of the cassava green mite fungal pathogen Neozygites tanajoae (Entomophthorales: Neozygitaceae) under controlled conditions: first observations at the population level. Hountondji FC; Hanna R; Cherry AJ; Sabelis MW; Agboton B; Korie S Exp Appl Acarol; 2007; 41(3):153-68. PubMed ID: 17357822 [TBL] [Abstract][Full Text] [Related]
23. Species- and density-dependent induction of volatile organic compounds by three mite species in cassava and their role in the attraction of a natural enemy. Pinto-Zevallos DM; Bezerra RHS; Souza SR; Ambrogi BG Exp Appl Acarol; 2018 Mar; 74(3):261-274. PubMed ID: 29478090 [TBL] [Abstract][Full Text] [Related]
24. Does methyl salicylate, a component of herbivore-induced plant odour, promote sporulation of the mite-pathogenic fungus Neozygites tanajoae? Hountondji FC; Hanna R; Sabelis MW Exp Appl Acarol; 2006; 39(1):63-74. PubMed ID: 16680566 [TBL] [Abstract][Full Text] [Related]
25. Importance of ambient saturation deficits in an epizootic of the fungus Neozygites floridana in cassava green mites (Mononychellus tanajoa). Elliot SL; De Moraes GJ; Mumford JD Exp Appl Acarol; 2002; 27(1-2):11-25. PubMed ID: 12593509 [TBL] [Abstract][Full Text] [Related]
26. Flexible antipredator behaviour in herbivorous mites through vertical migration in a plant. Magalhães S; Janssen A; Hanna R; Sabelis MW Oecologia; 2002 Jun; 132(1):143-149. PubMed ID: 28547275 [TBL] [Abstract][Full Text] [Related]
27. Relative contribution of biotic and abiotic factors to the population density of the cassava green mite, Mononychellus tanajoa (Acari: Tetranychidae). Rêgo AS; Teodoro AV; Maciel AG; Sarmento RA Exp Appl Acarol; 2013 Aug; 60(4):479-84. PubMed ID: 23417702 [TBL] [Abstract][Full Text] [Related]
28. The role of resting spores in the survival of the mite-pathogenic fungus Neozygites floridana from Mononychellus tanajoa during dry periods in Brazil. Elliot SL; Mumford JD; de Moraes GJ J Invertebr Pathol; 2002 Nov; 81(3):148-57. PubMed ID: 12507484 [TBL] [Abstract][Full Text] [Related]
29. Mulching with coffee husk and pulp in strawberry affects edaphic predatory mite and spider mite densities. de Cássia Neves Esteca F; Rodrigues LR; de Moraes GJ; Júnior ID; Klingen I Exp Appl Acarol; 2018 Oct; 76(2):161-183. PubMed ID: 30293177 [TBL] [Abstract][Full Text] [Related]
30. Phytoseiid predatory mites can disperse entomopathogenic fungi to prey patches. Lin G; Guertin C; Di Paolo SA; Todorova S; Brodeur J Sci Rep; 2019 Dec; 9(1):19435. PubMed ID: 31857623 [TBL] [Abstract][Full Text] [Related]
31. Influence of pathogenic fungi on the life history and predation rate of mites attacking a psyllid pest. Liu JF; Zhang ZQ; Beggs JR; Wei XY Ecotoxicol Environ Saf; 2019 Nov; 183():109585. PubMed ID: 31509930 [TBL] [Abstract][Full Text] [Related]
32. Does Long-Term Feeding on Alternative Prey Affect the Biological Performance of Neoseiulus barkeri (Acari: Phytoseiidae) on the Target Spider Mites? Li YY; Zhang GH; Tian CB; Liu MX; Liu YQ; Liu H; Wang JJ J Econ Entomol; 2017 Jun; 110(3):915-923. PubMed ID: 28334233 [TBL] [Abstract][Full Text] [Related]
33. [Mites associated with soybean crop in Rio Grande do Sul State, Brazil]. Guedes JV; Navia D; Lofego AC; Dequech ST Neotrop Entomol; 2007; 36(2):288-93. PubMed ID: 17607464 [TBL] [Abstract][Full Text] [Related]
34. Acarofauna present in organic strawberry fields and associated weed species in southern Brazil. Araujo ES; Benatto A; Mirás-Avalos JM; Rogoski T; Oelke SF; Schussler M; Ferla NJ; de Carvalho SA; Zawadneak MAC Exp Appl Acarol; 2022 Jan; 86(1):91-115. PubMed ID: 34792709 [TBL] [Abstract][Full Text] [Related]
35. Impact of a tarsonemid prey mite and its fungal diet on the reproductive performance of a predatory mite. Vangansbeke D; Duarte MVA; Merckx J; Benavente A; Magowski WL; França SC; Bolckmans K; Wäckers FL Exp Appl Acarol; 2021 Mar; 83(3):313-323. PubMed ID: 33590357 [TBL] [Abstract][Full Text] [Related]
36. Detection, Detrimental Effects, and Transmission Pathways of the Pathogenic Bacterium Acaricomes phytoseiuli in Commercial Predatory Mites. Xie Z; Hoffmann AA; Zhang B; Xu X Microbiol Spectr; 2022 Dec; 10(6):e0265422. PubMed ID: 36321911 [TBL] [Abstract][Full Text] [Related]
37. Two-spotted spider mite and its natural enemies on strawberry grown as protected and unprotected crops in Norway and Brazil. Castilho RC; Duarte VS; de Moraes GJ; Westrum K; Trandem N; Rocha LC; Delalibera I; Klingen I Exp Appl Acarol; 2015 Aug; 66(4):509-28. PubMed ID: 25948508 [TBL] [Abstract][Full Text] [Related]
38. Combining plant- and soil-dwelling predatory mites to optimise biological control of thrips. Wiethoff J; Poehling HM; Meyhöfer R Exp Appl Acarol; 2004; 34(3-4):239-61. PubMed ID: 15651523 [TBL] [Abstract][Full Text] [Related]
39. Supplemental food that supports both predator and pest: a risk for biological control? Leman A; Messelink GJ Exp Appl Acarol; 2015 Apr; 65(4):511-24. PubMed ID: 25349063 [TBL] [Abstract][Full Text] [Related]
40. Intraguild predation and cannibalism between the predatory mites Neoseiulus neobaraki and N. paspalivorus, natural enemies of the coconut mite Aceria guerreronis. Negloh K; Hanna R; Schausberger P Exp Appl Acarol; 2012 Nov; 58(3):235-46. PubMed ID: 22669279 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]