These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 23104381)

  • 1. Study of E. coli Hfq's RNA annealing acceleration and duplex destabilization activities using substrates with different GC-contents.
    Doetsch M; Stampfl S; Fürtig B; Beich-Frandsen M; Saxena K; Lybecker M; Schroeder R
    Nucleic Acids Res; 2013 Jan; 41(1):487-97. PubMed ID: 23104381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the kinetics of RNA annealing and strand displacement activities of the E. coli DEAD-box helicase CsdA.
    Stampfl S; Doetsch M; Beich-Frandsen M; Schroeder R
    RNA Biol; 2013 Jan; 10(1):149-56. PubMed ID: 23291905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of salt and RNA structure on annealing and strand displacement by Hfq.
    Hopkins JF; Panja S; McNeil SA; Woodson SA
    Nucleic Acids Res; 2009 Oct; 37(18):6205-13. PubMed ID: 19671524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hfq proximity and orientation controls RNA annealing.
    Panja S; Woodson SA
    Nucleic Acids Res; 2012 Sep; 40(17):8690-7. PubMed ID: 22761405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acidic Residues in the Hfq Chaperone Increase the Selectivity of sRNA Binding and Annealing.
    Panja S; Santiago-Frangos A; Schu DJ; Gottesman S; Woodson SA
    J Mol Biol; 2015 Nov; 427(22):3491-3500. PubMed ID: 26196441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. C-terminal domain of the RNA chaperone Hfq drives sRNA competition and release of target RNA.
    Santiago-Frangos A; Kavita K; Schu DJ; Gottesman S; Woodson SA
    Proc Natl Acad Sci U S A; 2016 Oct; 113(41):E6089-E6096. PubMed ID: 27681631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. E. coli DNA associated with isolated Hfq interacts with Hfq's distal surface and C-terminal domain.
    Updegrove TB; Correia JJ; Galletto R; Bujalowski W; Wartell RM
    Biochim Biophys Acta; 2010 Aug; 1799(8):588-96. PubMed ID: 20619373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational transition of DNA bound to Hfq probed by infrared spectroscopy.
    Geinguenaud F; Calandrini V; Teixeira J; Mayer C; Liquier J; Lavelle C; Arluison V
    Phys Chem Chem Phys; 2011 Jan; 13(3):1222-9. PubMed ID: 21082116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intrinsically disordered interaction network in an RNA chaperone revealed by native mass spectrometry.
    Sarni SH; Roca J; Du C; Jia M; Li H; Damjanovic A; Małecka EM; Wysocki VH; Woodson SA
    Proc Natl Acad Sci U S A; 2022 Nov; 119(47):e2208780119. PubMed ID: 36375072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational approach to ensure the stability of the favorable ATP binding site in E. coli Hfq.
    Lazar P; Kim S; Lee Y; Lee KW
    J Mol Graph Model; 2010 Dec; 29(4):573-80. PubMed ID: 21134774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compaction and condensation of DNA mediated by the C-terminal domain of Hfq.
    Malabirade A; Jiang K; Kubiak K; Diaz-Mendoza A; Liu F; van Kan JA; Berret JF; Arluison V; van der Maarel JRC
    Nucleic Acids Res; 2017 Jul; 45(12):7299-7308. PubMed ID: 28521053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sm-like protein Hfq: location of the ATP-binding site and the effect of ATP on Hfq-- RNA complexes.
    Arluison V; Mutyam SK; Mura C; Marco S; Sukhodolets MV
    Protein Sci; 2007 Sep; 16(9):1830-41. PubMed ID: 17660259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissecting RNA chaperone activity.
    Rajkowitsch L; Schroeder R
    RNA; 2007 Dec; 13(12):2053-60. PubMed ID: 17901153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HIV-1 nucleocapsid protein as a nucleic acid chaperone: spectroscopic study of its helix-destabilizing properties, structural binding specificity, and annealing activity.
    Urbaneja MA; Wu M; Casas-Finet JR; Karpel RL
    J Mol Biol; 2002 May; 318(3):749-64. PubMed ID: 12054820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and biochemical studies on ATP binding and hydrolysis by the Escherichia coli RNA chaperone Hfq.
    Hämmerle H; Beich-Frandsen M; Večerek B; Rajkowitsch L; Carugo O; Djinović-Carugo K; Bläsi U
    PLoS One; 2012; 7(11):e50892. PubMed ID: 23226421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Hfq on the conformation and compaction of DNA.
    Jiang K; Zhang C; Guttula D; Liu F; van Kan JA; Lavelle C; Kubiak K; Malabirade A; Lapp A; Arluison V; van der Maarel JR
    Nucleic Acids Res; 2015 Apr; 43(8):4332-41. PubMed ID: 25824948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of an Escherichia coli Hfq Core (residues 2-69)-DNA complex reveals multifunctional nucleic acid binding sites.
    Orans J; Kovach AR; Hoff KE; Horstmann NM; Brennan RG
    Nucleic Acids Res; 2020 Apr; 48(7):3987-3997. PubMed ID: 32133526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic competition of DsrA and rpoS fragments for the proximal binding site of Hfq as a means for efficient annealing.
    Hwang W; Arluison V; Hohng S
    Nucleic Acids Res; 2011 Jul; 39(12):5131-9. PubMed ID: 21357187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The bacterial endoribonuclease RNase E can cleave RNA in the absence of the RNA chaperone Hfq.
    Baek YM; Jang KJ; Lee H; Yoon S; Baek A; Lee K; Kim DE
    J Biol Chem; 2019 Nov; 294(44):16465-16478. PubMed ID: 31540970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The bacterial protein Hfq: much more than a mere RNA-binding factor.
    Sobrero P; Valverde C
    Crit Rev Microbiol; 2012 Nov; 38(4):276-99. PubMed ID: 22435753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.