These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 23104703)

  • 61. Surface electrodes record and label brain neurons in insects.
    Kostarakos K; Hedwig B
    J Neurophysiol; 2017 Nov; 118(5):2884-2889. PubMed ID: 28904103
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Walking in Fourier's space: algorithms for the computation of periodicities in song patterns by the cricket Gryllus bimaculatus.
    Hennig RM
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2009 Oct; 195(10):971-87. PubMed ID: 19756649
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Defecation initiates walking in the cricket Gryllus bimaculatus.
    Naniwa K; Sugimoto Y; Osuka K; Aonuma H
    J Insect Physiol; 2019 Jan; 112():117-122. PubMed ID: 30468738
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Modulatory action of acetylcholine on the Na+-dependent action potentials in Kenyon cells isolated from the mushroom body of the cricket brain.
    Terazima E; Yoshino M
    J Insect Physiol; 2010 Dec; 56(12):1746-54. PubMed ID: 20637212
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Carrier-dependent temporal processing in an auditory interneuron.
    Sabourin P; Gottlieb H; Pollack GS
    J Acoust Soc Am; 2008 May; 123(5):2910-7. PubMed ID: 18529207
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Temporal coding by populations of auditory receptor neurons.
    Sabourin P; Pollack GS
    J Neurophysiol; 2010 Mar; 103(3):1614-21. PubMed ID: 20071632
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Bilateral consequences of chronic unilateral deafferentation in the auditory system of the cricket Gryllus bimaculatus.
    Horch HW; Sheldon E; Cutting CC; Williams CR; Riker DM; Peckler HR; Sangal RB
    Dev Neurosci; 2011; 33(1):21-37. PubMed ID: 21346310
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Neuroethology of acoustic communication in field crickets - from signal generation to song recognition in an insect brain.
    Schöneich S
    Prog Neurobiol; 2020 Nov; 194():101882. PubMed ID: 32673695
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Asymmetry in cricket song: female preference and proximate mechanism of discrimination.
    Hirtenlehner S; Küng S; Kainz F; Römer H
    J Exp Biol; 2013 Jun; 216(Pt 11):2046-54. PubMed ID: 23470661
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Neurobiology: tuning in by turning off.
    Hoy R
    Nature; 2002 Aug; 418(6900):831-3. PubMed ID: 12192395
    [No Abstract]   [Full Text] [Related]  

  • 71. Tyrosine hydroxylase-immunoreactive neurons in the mushroom body of the field cricket, Gryllus bimaculatus.
    Hamanaka Y; Mizunami M
    Cell Tissue Res; 2019 Apr; 376(1):97-111. PubMed ID: 30578444
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Distribution of synapses on two local auditory interneurones, ON1 and ON2, in the prothoracic ganglion of the cricket: relationships with GABA-immunoreactive neurones.
    Watson AH; Hardt M
    Cell Tissue Res; 1996 Feb; 283(2):231-46. PubMed ID: 8593653
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Morphology of antennal motoneurons in the brains of two crickets, Gryllus bimaculatus and Gryllus campestris.
    Honegger HW; Allgäuer C; Klepsch U; Welker J
    J Comp Neurol; 1990 Jan; 291(2):256-68. PubMed ID: 2298934
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Frequency as a releaser in the courtship song of two crickets, Gryllus bimaculatus (de Geer) and Teleogryllus oceanicus: a neuroethological analysis.
    Libersat F; Murray JA; Hoy RR
    J Comp Physiol A; 1994 Apr; 174(4):485-94. PubMed ID: 8182564
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Phonotaxis in flying crickets. II. Physiological mechanisms of two-tone suppression of the high frequency avoidance steering behavior by the calling song.
    Nolen TG; Hoy RR
    J Comp Physiol A; 1986 Oct; 159(4):441-56. PubMed ID: 3783497
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Temperature coupling in cricket acoustic communication. I. Field and laboratory studies of temperature effects on calling song production and recognition in Gryllus firmus.
    Pires A; Hoy RR
    J Comp Physiol A; 1992 Aug; 171(1):69-78. PubMed ID: 1403992
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Enhanced sound perception by widespread-onset neuronal responses in auditory cortex.
    Hoshino O
    Neural Comput; 2007 Dec; 19(12):3310-34. PubMed ID: 17970655
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Functional evidence for internal feedback in the songbird brain nucleus HVC.
    Seki Y; Okanoya K
    Neuroreport; 2008 Apr; 19(6):679-82. PubMed ID: 18382286
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Functional gradients of auditory sensitivity along the anterior ectosylvian sulcus of the cat.
    Las L; Shapira AH; Nelken I
    J Neurosci; 2008 Apr; 28(14):3657-67. PubMed ID: 18385324
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Local structure sensitivity in auditory information processing in avian song nuclei.
    Koumura T; Seki Y; Okanoya K
    Neuroreport; 2014 May; 25(8):562-8. PubMed ID: 24642952
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.