These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 23104872)

  • 21. Cooled, ultrahigh Q, sapphire dielectric resonators for low-noise, microwave signal generation.
    Driscoll MM; Haynes JT; Jelen RA; Weinert RW; Gavaler JR; Talvacchio J; Wagner GR; Zaki KA; Liang XP
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(3):405-11. PubMed ID: 18267650
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mass and Stiffness Deconvolution in Nanomechanical Resonators for Precise Mass Measurement and In Vivo Biosensing.
    Bhattacharya G; McMichael S; Lionadi I; Biglarbeigi P; Finlay D; Fernandez-Ibanez P; Payam AF
    ACS Nano; 2024 Jul; 18(31):20181-90. PubMed ID: 39072375
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Resonator surface contamination-a cause of frequency fluctuations?
    Yong YK; Vig JR
    IEEE Trans Ultrason Ferroelectr Freq Control; 1989; 36(4):452-8. PubMed ID: 18285006
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultracoherent nanomechanical resonators via soft clamping and dissipation dilution.
    Tsaturyan Y; Barg A; Polzik ES; Schliesser A
    Nat Nanotechnol; 2017 Aug; 12(8):776-783. PubMed ID: 28604707
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Measuring Frequency Fluctuations in Nonlinear Nanomechanical Resonators.
    Maillet O; Zhou X; Gazizulin RR; Ilic R; Parpia JM; Bourgeois O; Fefferman AD; Collin E
    ACS Nano; 2018 Jun; 12(6):5753-5760. PubMed ID: 29733575
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Detection of bacteria based on the thermomechanical noise of a nanomechanical resonator: origin of the response and detection limits.
    Ramos D; Tamayo J; Mertens J; Calleja M; Villanueva LG; Zaballos A
    Nanotechnology; 2008 Jan; 19(3):035503. PubMed ID: 21817571
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nonlinear dynamics of nanomechanical beam resonators: improving the performance of NEMS-based sensors.
    Kacem N; Hentz S; Pinto D; Reig B; Nguyen V
    Nanotechnology; 2009 Jul; 20(27):275501. PubMed ID: 19528678
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Conceptual design of a high-Q, 3.4-GHz thin film quartz resonator.
    Patel MS; Yong YK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 May; 56(5):912-20. PubMed ID: 19473909
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Wave propagation in a duct with a periodic Helmholtz resonators array.
    Wang X; Mak CM
    J Acoust Soc Am; 2012 Feb; 131(2):1172-82. PubMed ID: 22352492
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of dephasing on the current statistics of mesoscopic devices.
    Pala MG; Iannaccone G
    Phys Rev Lett; 2004 Dec; 93(25):256803. PubMed ID: 15697926
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Five-mode frequency spectra of x3-dependent modes in AT-cut quartz resonators.
    Chen G; Wu R; Wang J; Du J; Yang J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Apr; 59(4):811-6. PubMed ID: 22547292
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinetic study of heterogeneous reaction of deliquesced NaCl particles with gaseous HNO3 using particle-on-substrate stagnation flow reactor approach.
    Liu Y; Cain JP; Wang H; Laskin A
    J Phys Chem A; 2007 Oct; 111(40):10026-43. PubMed ID: 17850118
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dual-mode thin film bulk acoustic wave resonators for parallel sensing of temperature and mass loading.
    García-Gancedo L; Pedrós J; Zhao XB; Ashley GM; Flewitt AJ; Milne WI; Ford CJ; Lu JR; Luo JK
    Biosens Bioelectron; 2012; 38(1):369-74. PubMed ID: 22784500
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Strong internal resonance in a nonlinear, asymmetric microbeam resonator.
    Asadi K; Yeom J; Cho H
    Microsyst Nanoeng; 2021; 7():9. PubMed ID: 34567726
    [TBL] [Abstract][Full Text] [Related]  

  • 35. MEMS fluid viscosity sensor.
    Ballato A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Mar; 57(3):669-76. PubMed ID: 20211786
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Finite volume analysis of temperature effects induced by active MRI implants: 2. Defects on active MRI implants causing hot spots.
    Busch MH; Vollmann W; Grönemeyer DH
    Biomed Eng Online; 2006 May; 5():35. PubMed ID: 16729878
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Theory and experimental verifications of the resonator Q and equivalent electrical parameters due to viscoelastic and mounting supports losses.
    Yong YK; Patel MS; Tanaka M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Aug; 57(8):1831-9. PubMed ID: 20679012
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Time-resolved coherent anti-Stokes Raman-scattering measurements of I2 in solid Kr: vibrational dephasing on the ground electronic state at 2.6-32 K.
    Kiviniemi T; Aumanen J; Myllyperkiö P; Apkarian VA; Pettersson M
    J Chem Phys; 2005 Aug; 123(6):64509. PubMed ID: 16122328
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thermal transient model of a crystal resonator employing thickness-shear vibrations.
    Shmaliy YS; Kurochka OH; Sokolinskiy EG; Rudnev OE
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(6):1396-406. PubMed ID: 18244335
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanomechanical Measurement of the Brownian Force Noise in a Viscous Liquid.
    Ari AB; Hanay MS; Paul MR; Ekinci KL
    Nano Lett; 2021 Jan; 21(1):375-381. PubMed ID: 33296218
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.