These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 23104912)

  • 1. Microscopic variations in interstitial and intracellular structure modulate the distribution of conduction delays and block in cardiac tissue with source-load mismatch.
    Hubbard ML; Henriquez CS
    Europace; 2012 Nov; 14 Suppl 5(Suppl 5):v3-v9. PubMed ID: 23104912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased interstitial loading reduces the effect of microstructural variations in cardiac tissue.
    Hubbard ML; Henriquez CS
    Am J Physiol Heart Circ Physiol; 2010 Apr; 298(4):H1209-18. PubMed ID: 20097772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A microstructural model of reentry arising from focal breakthrough at sites of source-load mismatch in a central region of slow conduction.
    Hubbard ML; Henriquez CS
    Am J Physiol Heart Circ Physiol; 2014 May; 306(9):H1341-52. PubMed ID: 24610922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fractional diffusion models of cardiac electrical propagation: role of structural heterogeneity in dispersion of repolarization.
    Bueno-Orovio A; Kay D; Grau V; Rodriguez B; Burrage K
    J R Soc Interface; 2014 Aug; 11(97):20140352. PubMed ID: 24920109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell size and communication: role in structural and electrical development and remodeling of the heart.
    Spach MS; Heidlage JF; Barr RC; Dolber PC
    Heart Rhythm; 2004 Oct; 1(4):500-15. PubMed ID: 15851207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of heterogeneities and intercellular coupling in wave propagation in cardiac tissue.
    Steinberg BE; Glass L; Shrier A; Bub G
    Philos Trans A Math Phys Eng Sci; 2006 May; 364(1842):1299-311. PubMed ID: 16608709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Basic mechanisms of cardiac impulse propagation and associated arrhythmias.
    Kléber AG; Rudy Y
    Physiol Rev; 2004 Apr; 84(2):431-88. PubMed ID: 15044680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conduction block in micropatterned cardiomyocyte cultures replicating the structure of ventricular cross-sections.
    Badie N; Scull JA; Klinger RY; Krol A; Bursac N
    Cardiovasc Res; 2012 Feb; 93(2):263-71. PubMed ID: 22072633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupled dynamics of voltage and calcium in paced cardiac cells.
    Shiferaw Y; Sato D; Karma A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 1):021903. PubMed ID: 15783348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial profiles of electrical mismatch determine vulnerability to conduction failure across a host-donor cell interface.
    Kirkton RD; Badie N; Bursac N
    Circ Arrhythm Electrophysiol; 2013 Dec; 6(6):1200-7. PubMed ID: 24235268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A generic ionic model of cardiac action potentials.
    Guo T; Abed AA; Lovell NH; Dokos S
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1465-8. PubMed ID: 21096358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of anisotropic conduction properties in the propagation of the cardiac action potential.
    Valderrábano M
    Prog Biophys Mol Biol; 2007; 94(1-2):144-68. PubMed ID: 17482242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrophysiological modeling of fibroblasts and their interaction with myocytes.
    Sachse FB; Moreno AP; Abildskov JA
    Ann Biomed Eng; 2008 Jan; 36(1):41-56. PubMed ID: 17999190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A finite element approach for modeling micro-structural discontinuities in the heart.
    Costa CM; Campos FO; Prassl AJ; dos Santos RW; Sánchez-Quintana D; Hofer E; Plank G
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():437-40. PubMed ID: 22254342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rate-dependent propagation of cardiac action potentials in a one-dimensional fiber.
    Cain JW; Tolkacheva EG; Schaeffer DG; Gauthier DJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 1):061906. PubMed ID: 15697401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of conduction velocity by nonmyocytes in the low coupling regime.
    Jacquemet V; Henriquez CS
    IEEE Trans Biomed Eng; 2009 Mar; 56(3):893-6. PubMed ID: 19389687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-uniform dispersion of the source-sink relationship alters wavefront curvature.
    Romero L; Trenor B; Ferrero JM; Starmer CF
    PLoS One; 2013; 8(11):e78328. PubMed ID: 24223791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Incorporating histology into a 3D microscopic computer model of myocardium to study propagation at a cellular level.
    Stinstra J; MacLeod R; Henriquez C
    Ann Biomed Eng; 2010 Apr; 38(4):1399-414. PubMed ID: 20049638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of gap junctions in the propagation of the cardiac action potential.
    Rohr S
    Cardiovasc Res; 2004 May; 62(2):309-22. PubMed ID: 15094351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of fibroblast-myocyte coupling on cardiac conduction and vulnerability to reentry: A computational study.
    Xie Y; Garfinkel A; Camelliti P; Kohl P; Weiss JN; Qu Z
    Heart Rhythm; 2009 Nov; 6(11):1641-9. PubMed ID: 19879544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.