BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 23105106)

  • 1. Interactions of the human LIP5 regulatory protein with endosomal sorting complexes required for transport.
    Skalicky JJ; Arii J; Wenzel DM; Stubblefield WM; Katsuyama A; Uter NT; Bajorek M; Myszka DG; Sundquist WI
    J Biol Chem; 2012 Dec; 287(52):43910-26. PubMed ID: 23105106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel mechanism of regulating the ATPase VPS4 by its cofactor LIP5 and the endosomal sorting complex required for transport (ESCRT)-III protein CHMP5.
    Vild CJ; Li Y; Guo EZ; Liu Y; Xu Z
    J Biol Chem; 2015 Mar; 290(11):7291-303. PubMed ID: 25637630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct mechanisms of recognizing endosomal sorting complex required for transport III (ESCRT-III) protein IST1 by different microtubule interacting and trafficking (MIT) domains.
    Guo EZ; Xu Z
    J Biol Chem; 2015 Mar; 290(13):8396-408. PubMed ID: 25657007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel interactions of ESCRT-III with LIP5 and VPS4 and their implications for ESCRT-III disassembly.
    Shim S; Merrill SA; Hanson PI
    Mol Biol Cell; 2008 Jun; 19(6):2661-72. PubMed ID: 18385515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vps4 stimulatory element of the cofactor Vta1 contacts the ATPase Vps4 α7 and α9 to stimulate ATP hydrolysis.
    Davies BA; Norgan AP; Payne JA; Schulz ME; Nichols MD; Tan JA; Xu Z; Katzmann DJ
    J Biol Chem; 2014 Oct; 289(41):28707-18. PubMed ID: 25164817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MITD1 is recruited to midbodies by ESCRT-III and participates in cytokinesis.
    Lee S; Chang J; Renvoisé B; Tipirneni A; Yang S; Blackstone C
    Mol Biol Cell; 2012 Nov; 23(22):4347-61. PubMed ID: 23015756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binding of Substrates to the Central Pore of the Vps4 ATPase Is Autoinhibited by the Microtubule Interacting and Trafficking (MIT) Domain and Activated by MIT Interacting Motifs (MIMs).
    Han H; Monroe N; Votteler J; Shakya B; Sundquist WI; Hill CP
    J Biol Chem; 2015 May; 290(21):13490-9. PubMed ID: 25833946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ESCRT-III recognition by VPS4 ATPases.
    Stuchell-Brereton MD; Skalicky JJ; Kieffer C; Karren MA; Ghaffarian S; Sundquist WI
    Nature; 2007 Oct; 449(7163):740-4. PubMed ID: 17928862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural Fine-Tuning of MIT-Interacting Motif 2 (MIM2) and Allosteric Regulation of ESCRT-III by Vps4 in Yeast.
    Kojima R; Obita T; Onoue K; Mizuguchi M
    J Mol Biol; 2016 Jun; 428(11):2392-2404. PubMed ID: 27075672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemical analyses of human IST1 and its function in cytokinesis.
    Bajorek M; Morita E; Skalicky JJ; Morham SG; Babst M; Sundquist WI
    Mol Biol Cell; 2009 Mar; 20(5):1360-73. PubMed ID: 19129479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of human VPS4A by ESCRT-III proteins reveals ability of substrates to relieve enzyme autoinhibition.
    Merrill SA; Hanson PI
    J Biol Chem; 2010 Nov; 285(46):35428-38. PubMed ID: 20805225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions of ubiquitin and CHMP5 with the V domain of HD-PTP reveals role for regulation of Vps4 ATPase.
    Pashkova N; Yu L; Schnicker NJ; Tseng CC; Gakhar L; Katzmann DJ; Piper RC
    Mol Biol Cell; 2021 Dec; 32(22):ar42. PubMed ID: 34586919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural Insights into AQP2 Targeting to Multivesicular Bodies.
    Roche JV; Nesverova V; Olsson C; Deen PM; Törnroth-Horsefield S
    Int J Mol Sci; 2019 Oct; 20(21):. PubMed ID: 31661793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissecting the Role of K61/K59 Residue in VPS4 Functions.
    Cesaro L; Toffoletto M; Calistri A; Salvi M
    Protein Pept Lett; 2016; 23(6):518-24. PubMed ID: 27030551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vfa1 binds to the N-terminal microtubule-interacting and trafficking (MIT) domain of Vps4 and stimulates its ATPase activity.
    Vild CJ; Xu Z
    J Biol Chem; 2014 Apr; 289(15):10378-10386. PubMed ID: 24567329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ALIX-CHMP4 interactions in the human ESCRT pathway.
    McCullough J; Fisher RD; Whitby FG; Sundquist WI; Hill CP
    Proc Natl Acad Sci U S A; 2008 Jun; 105(22):7687-91. PubMed ID: 18511562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational Changes in the Endosomal Sorting Complex Required for the Transport III Subunit Ist1 Lead to Distinct Modes of ATPase Vps4 Regulation.
    Tan J; Davies BA; Payne JA; Benson LM; Katzmann DJ
    J Biol Chem; 2015 Dec; 290(50):30053-65. PubMed ID: 26515066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and mechanism of the ESCRT pathway AAA+ ATPase Vps4.
    Han H; Hill CP
    Biochem Soc Trans; 2019 Feb; 47(1):37-45. PubMed ID: 30647138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disrupting the association of Autographa californica multiple nucleopolyhedrovirus Ac93 with cellular ESCRT-III/Vps4 hinders nuclear egress of nucleocapsids and intranuclear microvesicles formation.
    Liu T; Li Y; Qiao B; Jiang Y; Ji N; Li Z
    Virology; 2020 Feb; 541():85-100. PubMed ID: 32056718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystallization and Biophysical Approaches for Studying the Interactions Between the Vps4-MIT Domain and ESCRT-III Proteins.
    Obita T; Kojima R; Mizuguchi M
    Methods Mol Biol; 2019; 1998():175-187. PubMed ID: 31250302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.