These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 2310573)

  • 1. Axonal guidance in the chick visual system: posterior tectal membranes induce collapse of growth cones from the temporal retina.
    Cox EC; Müller B; Bonhoeffer F
    Neuron; 1990 Jan; 4(1):31-7. PubMed ID: 2310573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro experiments on axonal guidance and growth-cone collapse.
    Müller B; Stahl B; Bonhoeffer F
    J Exp Biol; 1990 Oct; 153():29-46. PubMed ID: 2280227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Axonal guidance by an avoidance mechanism.
    Walter J; Müller B; Bonhoeffer F
    J Physiol (Paris); 1990; 84(1):104-10. PubMed ID: 2193143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro experiments on axon guidance demonstrating an anterior-posterior gradient on the tectum.
    Bonhoeffer F; Huf J
    EMBO J; 1982; 1(4):427-31. PubMed ID: 6203734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein tyrosine phosphatase-mu differentially regulates neurite outgrowth of nasal and temporal neurons in the retina.
    Burden-Gulley SM; Ensslen SE; Brady-Kalnay SM
    J Neurosci; 2002 May; 22(9):3615-27. PubMed ID: 11978837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Is guidance of chick retinal axons in vitro influenced by proteases?
    Schlosshauer B; Walter J; Bonhoeffer F
    Neurosci Lett; 1990 Jun; 113(3):333-8. PubMed ID: 2199861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Avoidance of posterior tectal membranes by temporal retinal axons.
    Walter J; Henke-Fahle S; Bonhoeffer F
    Development; 1987 Dec; 101(4):909-13. PubMed ID: 3503703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Topographic-specific axon branching controlled by ephrin-As is the critical event in retinotectal map development.
    Yates PA; Roskies AL; McLaughlin T; O'Leary DD
    J Neurosci; 2001 Nov; 21(21):8548-63. PubMed ID: 11606643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Behavior of fish retinal growth cones encountering chick caudal tectal membranes: a time-lapse study on growth cone collapse.
    Bastmeyer M; Stuermer CA
    J Neurobiol; 1993 Jan; 24(1):37-50. PubMed ID: 8419523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recognition of position-specific properties of tectal cell membranes by retinal axons in vitro.
    Walter J; Kern-Veits B; Huf J; Stolze B; Bonhoeffer F
    Development; 1987 Dec; 101(4):685-96. PubMed ID: 3503693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular localization of guidance cues in the establishment of retinotectal topography.
    Davenport RW; Thies E; Nelson PG
    J Neurosci; 1996 Mar; 16(6):2074-85. PubMed ID: 8604052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Positional specificities of retinal growth cones in the mouse superior colliculus.
    Llirbat B; Godement P
    Eur J Neurosci; 1999 Jun; 11(6):2103-13. PubMed ID: 10336679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Axon guidance by gradients of a target-derived component.
    Baier H; Bonhoeffer F
    Science; 1992 Jan; 255(5043):472-5. PubMed ID: 1734526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal retinal growth cones collapse on contact with nasal retinal axons.
    Raper JA; Grunewald EB
    Exp Neurol; 1990 Jul; 109(1):70-4. PubMed ID: 2358058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of novel candidate regulators of retinotectal map formation through transcriptional profiling of the chick optic tectum.
    Kukreja S; Gautam P; Saxena R; Saxena M; Udaykumar N; Kumar A; Bhatt R; Kumar V; Sen J
    J Comp Neurol; 2017 Feb; 525(3):459-477. PubMed ID: 27410778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cross-species collapse activity of polarized radial glia on retinal ganglion cell axons.
    Stier H; Schlosshauer B
    Glia; 1999 Jan; 25(2):143-53. PubMed ID: 9890629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Guidance and topographic stabilization of nasal chick retinal axons on target-derived components in vitro.
    von Boxberg Y; Deiss S; Schwarz U
    Neuron; 1993 Mar; 10(3):345-57. PubMed ID: 8461131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth cone-target interactions in the frog retinotectal pathway.
    Reh TA; Constantine-Paton M
    J Neurosci Res; 1985; 13(1-2):89-100. PubMed ID: 2983078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extracellular Engrailed participates in the topographic guidance of retinal axons in vivo.
    Wizenmann A; Brunet I; Lam J; Sonnier L; Beurdeley M; Zarbalis K; Weisenhorn-Vogt D; Weinl C; Dwivedy A; Joliot A; Wurst W; Holt C; Prochiantz A
    Neuron; 2009 Nov; 64(3):355-366. PubMed ID: 19914184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromophore-assisted laser inactivation of a repulsive axonal guidance molecule.
    Müller BK; Jay DG; Bonhoeffer F
    Curr Biol; 1996 Nov; 6(11):1497-502. PubMed ID: 8939610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.