These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 23105929)
1. An efficient approach to mining maximal contiguous frequent patterns from large DNA sequence databases. Karim MR; Rashid MM; Jeong BS; Choi HJ Genomics Inform; 2012 Mar; 10(1):51-7. PubMed ID: 23105929 [TBL] [Abstract][Full Text] [Related]
2. Efficient mining of interesting patterns in large biological sequences. Rashid MM; Karim MR; Jeong BS; Choi HJ Genomics Inform; 2012 Mar; 10(1):44-50. PubMed ID: 23105928 [TBL] [Abstract][Full Text] [Related]
3. Mining Contiguous Sequential Generators in Biological Sequences. Zhang J; Wang Y; Zhang C; Shi Y IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(5):855-867. PubMed ID: 26529774 [TBL] [Abstract][Full Text] [Related]
4. Frequent patterns mining in multiple biological sequences. Chen L; Liu W Comput Biol Med; 2013 Oct; 43(10):1444-52. PubMed ID: 24034736 [TBL] [Abstract][Full Text] [Related]
5. NSAMD: A new approach to discover structured contiguous substrings in sequence datasets using Next-Symbol-Array. Pari A; Baraani A; Parseh S Comput Biol Chem; 2016 Oct; 64():384-395. PubMed ID: 27620380 [TBL] [Abstract][Full Text] [Related]
6. WildSpan: mining structured motifs from protein sequences. Hsu CM; Chen CY; Liu BJ Algorithms Mol Biol; 2011 Mar; 6(1):6. PubMed ID: 21453542 [TBL] [Abstract][Full Text] [Related]
7. Efficient mining gapped sequential patterns for motifs in biological sequences. Liao V; Chen MS BMC Syst Biol; 2013; 7 Suppl 4(Suppl 4):S7. PubMed ID: 24565366 [TBL] [Abstract][Full Text] [Related]
11. MACFP: Maximal Approximate Consecutive Frequent Pattern Mining under Edit Distance. Shang J; Peng J; Han J Proc SIAM Int Conf Data Min; 2016 May; 2016():558-566. PubMed ID: 28174677 [TBL] [Abstract][Full Text] [Related]
12. NOSEP: Nonoverlapping Sequence Pattern Mining With Gap Constraints. Youxi Wu ; Yao Tong ; Xingquan Zhu ; Xindong Wu IEEE Trans Cybern; 2018 Oct; 48(10):2809-2822. PubMed ID: 28976327 [TBL] [Abstract][Full Text] [Related]
13. Mining high occupancy patterns to analyze incremental data in intelligent systems. Kim H; Ryu T; Lee C; Kim H; Truong T; Fournier-Viger P; Pedrycz W; Yun U ISA Trans; 2022 Dec; 131():460-475. PubMed ID: 35636986 [TBL] [Abstract][Full Text] [Related]
14. Mining significant high utility gene regulation sequential patterns. Zihayat M; Davoudi H; An A BMC Syst Biol; 2017 Dec; 11(Suppl 6):109. PubMed ID: 29297335 [TBL] [Abstract][Full Text] [Related]
15. Using suffix tree to discover complex repetitive patterns in DNA sequences. He D Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3474-7. PubMed ID: 17945779 [TBL] [Abstract][Full Text] [Related]
16. MAIL: mining sequential patterns with wildcards. Xie F; Wu X; Hu X; Gao J; Guo D; Fei Y; Hua E Int J Data Min Bioinform; 2013; 8(1):1-23. PubMed ID: 23865162 [TBL] [Abstract][Full Text] [Related]
17. Mining frequent biological sequences based on bitmap without candidate sequence generation. Wang Q; Davis DN; Ren J Comput Biol Med; 2016 Feb; 69():152-7. PubMed ID: 26773937 [TBL] [Abstract][Full Text] [Related]
18. The generalised k-Truncated Suffix Tree for time-and space-efficient searches in multiple DNA or protein sequences. Schulz MH; Bauer S; Robinson PN Int J Bioinform Res Appl; 2008; 4(1):81-95. PubMed ID: 18283030 [TBL] [Abstract][Full Text] [Related]
19. Top-k Self-Adaptive Contrast Sequential Pattern Mining. Wu Y; Wang Y; Li Y; Zhu X; Wu X IEEE Trans Cybern; 2022 Nov; 52(11):11819-11833. PubMed ID: 34143749 [TBL] [Abstract][Full Text] [Related]
20. An efficient pattern growth approach for mining fault tolerant frequent itemsets. Bashir S Expert Syst Appl; 2020 Apr; 143():113046. PubMed ID: 32288329 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]