BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 23106083)

  • 21. Triplex formation by psoralen-conjugated chimeric oligonucleoside methylphosphonates.
    Cassidy RA; Kondo NS; Miller PS
    Biochemistry; 2000 Jul; 39(29):8683-91. PubMed ID: 10913277
    [TBL] [Abstract][Full Text] [Related]  

  • 22. DNA sequence specificity of a naphthylquinoline triple helix-binding ligand.
    Cassidy SA; Strekowski L; Fox KR
    Nucleic Acids Res; 1996 Nov; 24(21):4133-8. PubMed ID: 8932362
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The high stability of the triple helices formed between short purine oligonucleotides and SIV/HIV-2 vpx genes is determined by the targeted DNA structure.
    Svinarchuk F; Monnot M; Merle A; Malvy C; Fermandjian S
    Nucleic Acids Res; 1995 Oct; 23(19):3831-6. PubMed ID: 7479024
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Triplex formation with alpha anomers of purine-rich and pyrimidine-rich oligodeoxynucleotides.
    Noonberg SB; François JC; Praseuth D; Guieysse-Peugeot AL; Lacoste J; Garestier T; Hélène C
    Nucleic Acids Res; 1995 Oct; 23(20):4042-9. PubMed ID: 7479062
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spectroscopic and calorimetric studies on the binding of an indoloquinoline drug to parallel and antiparallel DNA triplexes.
    Riechert-Krause F; Autenrieth K; Eick A; Weisz K
    Biochemistry; 2013 Jan; 52(1):41-52. PubMed ID: 23234257
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Purine- and pyrimidine-triple-helix-forming oligonucleotides recognize qualitatively different target sites at the ribosomal DNA locus.
    Maldonado R; Filarsky M; Grummt I; Längst G
    RNA; 2018 Mar; 24(3):371-380. PubMed ID: 29222118
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hoogsteen DNA duplexes of 3'-3'- and 5'-5'-linked oligonucleotides and trip formation with RNA and DNA pyrimidine single strands: experimental and molecular modeling studies.
    Kandimalla ER; Agrawal S
    Biochemistry; 1996 Dec; 35(48):15332-9. PubMed ID: 8952484
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Increasing the analytical sensitivity by oligonucleotides modified with para- and ortho-twisted intercalating nucleic acids--TINA.
    Schneider UV; Géci I; Jøhnk N; Mikkelsen ND; Pedersen EB; Lisby G
    PLoS One; 2011; 6(6):e20565. PubMed ID: 21673988
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Understanding intercalative modulation of G-rich sequence folding: solution structure of a TINA-conjugated antiparallel DNA triplex.
    Garavís M; Edwards PJB; Serrano-Chacón I; Doluca O; Filichev VV; González C
    Nucleic Acids Res; 2024 Mar; 52(5):2686-2697. PubMed ID: 38281138
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Presence of divalent cation is not mandatory for the formation of intramolecular purine-motif triplex containing human c-jun protooncogene target.
    Kaushik S; Kaushik M; Svinarchuk F; Malvy C; Fermandjian S; Kukreti S
    Biochemistry; 2011 May; 50(19):4132-42. PubMed ID: 21381700
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Triple helix formation with purine-rich phosphorothioate-containing oligonucleotides covalently linked to an acridine derivative.
    Lacoste J; François JC; Hélène C
    Nucleic Acids Res; 1997 May; 25(10):1991-8. PubMed ID: 9115367
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Parallel and antiparallel G*G.C base triplets in pur*pur.pyr triple helices formed with (GA) third strands.
    Liquier J; Geinguenaud F; Huynh-Dinh T; Gouyette C; Khomyakova E; Taillandier E
    J Biomol Struct Dyn; 2001 Dec; 19(3):527-34. PubMed ID: 11790150
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A new approach to overcome potassium-mediated inhibition of triplex formation.
    Svinarchuk F; Cherny D; Debin A; Delain E; Malvy C
    Nucleic Acids Res; 1996 Oct; 24(19):3858-65. PubMed ID: 8871568
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 1-, 2-, and 4-ethynylpyrenes in the structure of twisted intercalating nucleic acids: structure, thermal stability, and fluorescence relationship.
    Filichev VV; Astakhova IV; Malakhov AD; Korshun VA; Pedersen EB
    Chemistry; 2008; 14(32):9968-80. PubMed ID: 18810743
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Formation of a stable triplex from a single DNA strand.
    Sklenár V; Feigon J
    Nature; 1990 Jun; 345(6278):836-8. PubMed ID: 2359461
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stable and selective formation of hoogsteen-type triplexes and duplexes using twisted intercalating nucleic acids (TINA) prepared via postsynthetic Sonogashira solid-phase coupling reactions.
    Filichev VV; Pedersen EB
    J Am Chem Soc; 2005 Oct; 127(42):14849-58. PubMed ID: 16231939
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interdependence of pyrene interactions and tetramolecular G4-DNA assembly.
    Doluca O; Withers JM; Loo TS; Edwards PJ; González C; Filichev VV
    Org Biomol Chem; 2015 Mar; 13(12):3742-8. PubMed ID: 25687117
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nucleosome core particles inhibit DNA triple helix formation.
    Brown PM; Fox KR
    Biochem J; 1996 Oct; 319 ( Pt 2)(Pt 2):607-11. PubMed ID: 8912701
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Triplex intermediates in folding of human telomeric quadruplexes probed by microsecond-scale molecular dynamics simulations.
    Stadlbauer P; Trantírek L; Cheatham TE; Koča J; Sponer J
    Biochimie; 2014 Oct; 105():22-35. PubMed ID: 25038568
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A novel FRET pair for detection of parallel DNA triplexes by the LightCycler.
    Schneider UV; Severinsen JK; Géci I; Okkels LM; Jøhnk N; Mikkelsen ND; Klinge T; Pedersen EB; Westh H; Lisby G
    BMC Biotechnol; 2010 Jan; 10():4. PubMed ID: 20102641
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.