These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 23106277)

  • 21. 1
    Korycka-Machała M; Viljoen A; Pawełczyk J; Borówka P; Dziadek B; Gobis K; Brzostek A; Kawka M; Blaise M; Strapagiel D; Kremer L; Dziadek J
    Antimicrob Agents Chemother; 2019 Oct; 63(10):. PubMed ID: 31332069
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Keto-mycolic acid-dependent pellicle formation confers tolerance to drug-sensitive Mycobacterium tuberculosis.
    Sambandan D; Dao DN; Weinrick BC; Vilchèze C; Gurcha SS; Ojha A; Kremer L; Besra GS; Hatfull GF; Jacobs WR
    mBio; 2013 May; 4(3):e00222-13. PubMed ID: 23653446
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mycobacterial cell wall biosynthesis: a multifaceted antibiotic target.
    Abrahams KA; Besra GS
    Parasitology; 2018 Feb; 145(2):116-133. PubMed ID: 27976597
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oxygenated mycolic acids are necessary for virulence of Mycobacterium tuberculosis in mice.
    Dubnau E; Chan J; Raynaud C; Mohan VP; Lanéelle MA; Yu K; Quémard A; Smith I; Daffé M
    Mol Microbiol; 2000 May; 36(3):630-7. PubMed ID: 10844652
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The changes in mycolic acid structures caused by hadC mutation have a dramatic effect on the virulence of Mycobacterium tuberculosis.
    Slama N; Jamet S; Frigui W; Pawlik A; Bottai D; Laval F; Constant P; Lemassu A; Cam K; Daffé M; Brosch R; Eynard N; Quémard A
    Mol Microbiol; 2016 Feb; 99(4):794-807. PubMed ID: 26538472
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lipid transport in Mycobacterium tuberculosis and its implications in virulence and drug development.
    Bailo R; Bhatt A; Aínsa JA
    Biochem Pharmacol; 2015 Aug; 96(3):159-67. PubMed ID: 25986884
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mycobacterial Membranes as Actionable Targets for Lipid-Centric Therapy in Tuberculosis.
    Modak B; Girkar S; Narayan R; Kapoor S
    J Med Chem; 2022 Feb; 65(4):3046-3065. PubMed ID: 35133820
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An approach for the rational design of new antituberculosis agents.
    Pasqualoto KF; Ferreira EI
    Curr Drug Targets; 2001 Dec; 2(4):427-37. PubMed ID: 11732641
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mycolic acids: structures, biosynthesis, and beyond.
    Marrakchi H; Lanéelle MA; Daffé M
    Chem Biol; 2014 Jan; 21(1):67-85. PubMed ID: 24374164
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evolution of Mycolic Acid Biosynthesis Genes and Their Regulation during Starvation in Mycobacterium tuberculosis.
    Jamet S; Quentin Y; Coudray C; Texier P; Laval F; Daffé M; Fichant G; Cam K
    J Bacteriol; 2015 Dec; 197(24):3797-811. PubMed ID: 26416833
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lipolytic enzymes inhibitors: A new way for antibacterial drugs discovery.
    Cavalier JF; Spilling CD; Durand T; Camoin L; Canaan S
    Eur J Med Chem; 2021 Jan; 209():112908. PubMed ID: 33071055
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rv0132c of Mycobacterium tuberculosis encodes a coenzyme F420-dependent hydroxymycolic acid dehydrogenase.
    Purwantini E; Mukhopadhyay B
    PLoS One; 2013; 8(12):e81985. PubMed ID: 24349169
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Potential Drug Targets in Mycobacterial Cell Wall: Non-Lipid Perspective.
    Das S; Hameed S; Fatima Z
    Curr Drug Discov Technol; 2020; 17(2):147-153. PubMed ID: 29875004
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Targeting the formation of the cell wall core of M. tuberculosis.
    Barry CE; Crick DC; McNeil MR
    Infect Disord Drug Targets; 2007 Jun; 7(2):182-202. PubMed ID: 17970228
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mycolic acids, a promising mycobacterial ligand for targeting of nanoencapsulated drugs in tuberculosis.
    Lemmer Y; Kalombo L; Pietersen RD; Jones AT; Semete-Makokotlela B; Van Wyngaardt S; Ramalapa B; Stoltz AC; Baker B; Verschoor JA; Swai HS; de Chastellier C
    J Control Release; 2015 Aug; 211():94-104. PubMed ID: 26055640
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mycolic acid methyltransferase, MmaA4, is necessary for thiacetazone susceptibility in Mycobacterium tuberculosis.
    Alahari A; Alibaud L; Trivelli X; Gupta R; Lamichhane G; Reynolds RC; Bishai WR; Guerardel Y; Kremer L
    Mol Microbiol; 2009 Mar; 71(5):1263-77. PubMed ID: 19183278
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mycobacterial Membrane Protein Large 3 (MmpL3) Inhibitors: A Promising Approach to Combat Tuberculosis.
    Umare MD; Khedekar PB; Chikhale RV
    ChemMedChem; 2021 Oct; 16(20):3136-3148. PubMed ID: 34288519
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Diarylcoumarins inhibit mycolic acid biosynthesis and kill Mycobacterium tuberculosis by targeting FadD32.
    Stanley SA; Kawate T; Iwase N; Shimizu M; Clatworthy AE; Kazyanskaya E; Sacchettini JC; Ioerger TR; Siddiqi NA; Minami S; Aquadro JA; Grant SS; Rubin EJ; Hung DT
    Proc Natl Acad Sci U S A; 2013 Jul; 110(28):11565-70. PubMed ID: 23798446
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The outer parts of the mycobacterial envelope as permeability barriers.
    Draper P
    Front Biosci; 1998 Dec; 3():D1253-61. PubMed ID: 9851911
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cell envelope lipids in the pathophysiology of Mycobacterium tuberculosis.
    Singh P; Rameshwaram NR; Ghosh S; Mukhopadhyay S
    Future Microbiol; 2018 May; 13():689-710. PubMed ID: 29771143
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.