BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 23106331)

  • 1. Chemical properties and oxidative stability of perilla oils obtained from roasted perilla seeds as affected by extraction methods.
    Jung DM; Yoon SH; Jung MY
    J Food Sci; 2012 Dec; 77(12):C1249-55. PubMed ID: 23106331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of roasting on the chemical composition and oxidative stability of perilla oil.
    Zhao T; Hong SI; Lee J; Lee JS; Kim IH
    J Food Sci; 2012 Dec; 77(12):C1273-8. PubMed ID: 23140339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature dependence of autoxidation of perilla oil and tocopherol degradation.
    Wang S; Hwang H; Yoon S; Choe E
    J Food Sci; 2010 Aug; 75(6):C498-505. PubMed ID: 20722903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Headspace-solid phase microextraction-gas chromatography-tandem mass spectrometry (HS-SPME-GC-MS2) method for the determination of pyrazines in perilla seed oils: impact of roasting on the pyrazines in perilla seed oils.
    Kwon TY; Park JS; Jung MY
    J Agric Food Chem; 2013 Sep; 61(36):8514-23. PubMed ID: 23968142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of roasting conditions on the physicochemical properties and volatile distribution in perilla oils (Perilla frutescens var. japonica).
    Park MH; Seol NG; Chang PS; Yoon SH; Lee JH
    J Food Sci; 2011 Aug; 76(6):C808-16. PubMed ID: 21623788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A gas chromatography-tandem quadrupole mass spectrometric analysis of policosanols in commercial vegetable oils.
    Jung DM; Lee MJ; Yoon SH; Jung MY
    J Food Sci; 2011 Aug; 76(6):C891-9. PubMed ID: 22417487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Policosanol content and composition in perilla seeds.
    Adhikari P; Hwang KT; Park JN; Kim CK
    J Agric Food Chem; 2006 Jul; 54(15):5359-62. PubMed ID: 16848517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Singlet oxygen-related photooxidative stability and antioxidant changes of diacylglycerol-rich oil derived from mixture of olive and perilla oil.
    Kim N; Choe E
    J Food Sci; 2012 Nov; 77(11):C1185-91. PubMed ID: 23057833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of Supercritical Carbon Dioxide Extraction of Eucommia ulmoides Seed Oil and Quality Evaluation of the Oil.
    Zhang ZS; Liu YL; Che LM
    J Oleo Sci; 2018 Mar; 67(3):255-263. PubMed ID: 29459511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative stability of tree nut oils.
    Miraliakbari H; Shahidi F
    J Agric Food Chem; 2008 Jun; 56(12):4751-9. PubMed ID: 18494484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Triacylglycerol Molecular Species on the Oxidation Behavior of Oils Containing α-Linolenic Acid.
    Dote S; Yamamoto Y; Hara S
    J Oleo Sci; 2016; 65(3):193-9. PubMed ID: 26935948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of medium-chain triacylglycerol (MCT)-enriched seed oil from Cinnamomum camphora (Lauraceae) and its oxidative stability.
    Hu JN; Zhang B; Zhu XM; Li J; Fan YW; Liu R; Tang L; Lee KT; Deng ZY
    J Agric Food Chem; 2011 May; 59(9):4771-8. PubMed ID: 21456611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical composition, oxidative stability and antioxidant capacity of oil extracted from roasted seeds of Sacha-inchi (Plukenetia volubilis L.).
    Cisneros FH; Paredes D; Arana A; Cisneros-Zevallos L
    J Agric Food Chem; 2014 Jun; 62(22):5191-7. PubMed ID: 24823227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nondestructive determination of oil content and fatty acid composition in perilla seeds by near-infrared spectroscopy.
    Kim KS; Park SH; Choung MG
    J Agric Food Chem; 2007 Mar; 55(5):1679-85. PubMed ID: 17288449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical Characterization of Chinese Perilla Seed Oil.
    Zhao B; Fu S; Li H; Chen Z
    J Oleo Sci; 2021 Nov; 70(11):1575-1583. PubMed ID: 34645745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Seed oil extraction from red prickly pear using hexane and supercritical CO
    Koubaa M; Mhemdi H; Barba FJ; Angelotti A; Bouaziz F; Chaabouni SE; Vorobiev E
    J Sci Food Agric; 2017 Jan; 97(2):613-620. PubMed ID: 27106858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Supercritical CO2 extraction of fatty oils from bee pollen and its GC-MS analysis].
    Lei H; Shi Q; Ge F; Pan J
    Zhong Yao Cai; 2004 Mar; 27(3):177-80. PubMed ID: 15272780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glucosinolates and fatty acid, sterol, and tocopherol composition of seed oils from Capparis spinosa Var. spinosa and Capparis ovata Desf. Var. canescens (Coss.) Heywood.
    Matthäus B; Ozcan M
    J Agric Food Chem; 2005 Sep; 53(18):7136-41. PubMed ID: 16131121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of Perilla seed oil and extra virgin olive oil blends for nutritional, oxidative stability and consumer acceptance improvements.
    Torri L; Bondioli P; Folegatti L; Rovellini P; Piochi M; Morini G
    Food Chem; 2019 Jul; 286():584-591. PubMed ID: 30827650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies of reaction variables for lipase-catalyzed production of alpha-linolenic acid enriched structured lipid and oxidative stability with antioxidants.
    Mitra K; Shin JA; Lee JH; Kim SA; Hong ST; Sung CK; Xue CL; Lee KT
    J Food Sci; 2012 Jan; 77(1):C39-45. PubMed ID: 22122200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.