BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 23106363)

  • 1. Slow unfolding pathway of hyperthermophilic Tk-RNase H2 examined by pulse proteolysis using the stable protease Tk-subtilisin.
    Okada J; Koga Y; Takano K; Kanaya S
    Biochemistry; 2012 Nov; 51(45):9178-91. PubMed ID: 23106363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetically robust monomeric protein from a hyperthermophile.
    Mukaiyama A; Takano K; Haruki M; Morikawa M; Kanaya S
    Biochemistry; 2004 Nov; 43(43):13859-66. PubMed ID: 15504048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Folding and Unfolding Kinetics of Unpurified Proteins by Pulse Proteolysis.
    Shima K; Okada J; Sano S; Takano K
    Protein Pept Lett; 2016; 23(11):976-987. PubMed ID: 27653628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subtilisin-like serine protease from hyperthermophilic archaeon Thermococcus kodakaraensis with N- and C-terminal propeptides.
    Foophow T; Tanaka S; Koga Y; Takano K; Kanaya S
    Protein Eng Des Sel; 2010 May; 23(5):347-55. PubMed ID: 20100702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proline effect on the thermostability and slow unfolding of a hyperthermophilic protein.
    Takano K; Higashi R; Okada J; Mukaiyama A; Tadokoro T; Koga Y; Kanaya S
    J Biochem; 2009 Jan; 145(1):79-85. PubMed ID: 18977771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accelerated maturation of Tk-subtilisin by a Leu→Pro mutation at the C-terminus of the propeptide, which reduces the binding of the propeptide to Tk-subtilisin.
    Uehara R; Ueda Y; You DJ; Koga Y; Kanaya S
    FEBS J; 2013 Feb; 280(4):994-1006. PubMed ID: 23237738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrophobic effect on the stability and folding of a hyperthermophilic protein.
    Dong H; Mukaiyama A; Tadokoro T; Koga Y; Takano K; Kanaya S
    J Mol Biol; 2008 Apr; 378(1):264-72. PubMed ID: 18353366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osmolyte effect on the stability and folding of a hyperthermophilic protein.
    Mukaiyama A; Koga Y; Takano K; Kanaya S
    Proteins; 2008 Apr; 71(1):110-8. PubMed ID: 17932924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Folding of horse cytochrome c in the reduced state.
    Bhuyan AK; Udgaonkar JB
    J Mol Biol; 2001 Oct; 312(5):1135-60. PubMed ID: 11580255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Folding of subtilisin BPN': role of the pro-sequence.
    Eder J; Rheinnecker M; Fersht AR
    J Mol Biol; 1993 Sep; 233(2):293-304. PubMed ID: 8377204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic and thermodynamic thermal stabilities of ribonuclease A and ribonuclease B.
    Arnold U; Ulbrich-Hofmann R
    Biochemistry; 1997 Feb; 36(8):2166-72. PubMed ID: 9047316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Equilibrium and kinetic stability of a hyperthermophilic protein, O6-methylguanine-DNA methyltransferase under various extreme conditions.
    Nishikori S; Shiraki K; Okanojo M; Imanaka T; Takagi M
    J Biochem; 2004 Oct; 136(4):503-8. PubMed ID: 15625320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Requirement of left-handed glycine residue for high stability of the Tk-subtilisin propeptide as revealed by mutational and crystallographic analyses.
    Pulido MA; Tanaka S; Sringiew C; You DJ; Matsumura H; Koga Y; Takano K; Kanaya S
    J Mol Biol; 2007 Dec; 374(5):1359-73. PubMed ID: 17988685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the folding and unfolding reactions of single-chain monellin: evidence for multiple intermediates and competing pathways.
    Patra AK; Udgaonkar JB
    Biochemistry; 2007 Oct; 46(42):11727-43. PubMed ID: 17902706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An alternative mature form of subtilisin homologue, Tk-SP, from Thermococcus kodakaraensis identified in the presence of Ca2+.
    Sinsereekul N; Foophow T; Yamanouchi M; Koga Y; Takano K; Kanaya S
    FEBS J; 2011 Jun; 278(11):1901-11. PubMed ID: 21443525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Requirement of a unique Ca(2+)-binding loop for folding of Tk-subtilisin from a hyperthermophilic archaeon.
    Takeuchi Y; Tanaka S; Matsumura H; Koga Y; Takano K; Kanaya S
    Biochemistry; 2009 Nov; 48(44):10637-43. PubMed ID: 19813760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution and thermodynamics of the slow unfolding of hyperstable monomeric proteins.
    Okada J; Okamoto T; Mukaiyama A; Tadokoro T; You DJ; Chon H; Koga Y; Takano K; Kanaya S
    BMC Evol Biol; 2010 Jul; 10():207. PubMed ID: 20615256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of the interactions critical for propeptide-catalyzed folding of Tk-subtilisin.
    Tanaka S; Matsumura H; Koga Y; Takano K; Kanaya S
    J Mol Biol; 2009 Nov; 394(2):306-19. PubMed ID: 19766655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of a subtilisin homologue, Tk-SP, from Thermococcus kodakaraensis: requirement of a C-terminal beta-jelly roll domain for hyperstability.
    Foophow T; Tanaka S; Angkawidjaja C; Koga Y; Takano K; Kanaya S
    J Mol Biol; 2010 Jul; 400(4):865-77. PubMed ID: 20595040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increase in activation rate of Pro-Tk-subtilisin by a single nonpolar-to-polar amino acid substitution at the hydrophobic core of the propeptide domain.
    Yuzaki K; Sanda Y; You DJ; Uehara R; Koga Y; Kanaya S
    Protein Sci; 2013 Dec; 22(12):1711-21. PubMed ID: 24115021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.