These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 23106513)

  • 1. Utilizing a water-soluble cryptophane with fast xenon exchange rates for picomolar sensitivity NMR measurements.
    Bai Y; Hill PA; Dmochowski IJ
    Anal Chem; 2012 Nov; 84(22):9935-41. PubMed ID: 23106513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substituent effects on xenon binding affinity and solution behavior of water-soluble cryptophanes.
    Hill PA; Wei Q; Troxler T; Dmochowski IJ
    J Am Chem Soc; 2009 Mar; 131(8):3069-77. PubMed ID: 19239271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monomeric Cryptophane with Record-High Xe Affinity Gives Insights into Aggregation-Dependent Sensing.
    Zemerov SD; Lin Y; Dmochowski IJ
    Anal Chem; 2021 Jan; 93(3):1507-1514. PubMed ID: 33356164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacterial spore detection and analysis using hyperpolarized
    Bai Y; Wang Y; Goulian M; Driks A; Dmochowski IJ
    Chem Sci; 2014 Aug; 5(8):3197-3203. PubMed ID: 25089181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Expanded Palette of Xenon-129 NMR Biosensors.
    Wang Y; Dmochowski IJ
    Acc Chem Res; 2016 Oct; 49(10):2179-2187. PubMed ID: 27643815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High Exchange Rate Complexes of
    Schnurr M; Joseph R; Naugolny-Keisar A; Kaizerman-Kane D; Bogdanoff N; Schuenke P; Cohen Y; Schröder L
    Chemphyschem; 2019 Jan; 20(2):246-251. PubMed ID: 30079552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative chemical exchange saturation transfer with hyperpolarized nuclei (qHyper-CEST): sensing xenon-host exchange dynamics and binding affinities by NMR.
    Kunth M; Witte C; Schröder L
    J Chem Phys; 2014 Nov; 141(19):194202. PubMed ID: 25416884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degeneracy in cryptophane-xenon complex formation in aqueous solution.
    Korchak S; Kilian W; Mitschang L
    Chem Commun (Camb); 2015 Jan; 51(9):1721-4. PubMed ID: 25516919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous-wave saturation considerations for efficient xenon depolarization.
    Kunth M; Witte C; Schröder L
    NMR Biomed; 2015 Jun; 28(6):601-6. PubMed ID: 25900330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of a functionalizable water-soluble cryptophane-111.
    Dubost E; Kotera N; Garcia-Argote S; Boulard Y; Léonce E; Boutin C; Berthault P; Dugave C; Rousseau B
    Org Lett; 2013 Jun; 15(11):2866-8. PubMed ID: 23705676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energetics and exchange of xenon and water in a prototypic cryptophane-A biosensor structure.
    Hilla P; Vaara J
    Phys Chem Chem Phys; 2022 Aug; 24(30):17946-17950. PubMed ID: 35748333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of pH and counterions on the encapsulation properties of xenon in water-soluble cryptophanes.
    Berthault P; Desvaux H; Wendlinger T; Gyejacquot M; Stopin A; Brotin T; Dutasta JP; Boulard Y
    Chemistry; 2010 Nov; 16(43):12941-6. PubMed ID: 20886471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dendronized cryptophanes as water-soluble xenon hosts for (129)Xe magnetic resonance imaging.
    Tyagi R; Witte C; Haag R; Schröder L
    Org Lett; 2014 Sep; 16(17):4436-9. PubMed ID: 25152959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cryptophane Nanoscale Assemblies Expand
    Zemerov SD; Roose BW; Greenberg ML; Wang Y; Dmochowski IJ
    Anal Chem; 2018 Jun; 90(12):7730-7738. PubMed ID: 29782149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding a host-guest model system through ¹²⁹Xe NMR spectroscopic experiments and theoretical studies.
    Dubost E; Dognon JP; Rousseau B; Milanole G; Dugave C; Boulard Y; Léonce E; Boutin C; Berthault P
    Angew Chem Int Ed Engl; 2014 Sep; 53(37):9837-40. PubMed ID: 25048162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular Sensing with Hyperpolarized (129) Xe Using Switchable Chemical Exchange Relaxation Transfer.
    Zamberlan F; Lesbats C; Rogers NJ; Krupa JL; Pavlovskaya GE; Thomas NR; Faas HM; Meersmann T
    Chemphyschem; 2015 Aug; 16(11):2294-8. PubMed ID: 26083583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of enantiopure, trisubstituted cryptophane-A derivatives.
    Taratula O; Kim MP; Bai Y; Philbin JP; Riggle BA; Haase DN; Dmochowski IJ
    Org Lett; 2012 Jul; 14(14):3580-3. PubMed ID: 22783828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A cryptophane-based "turn-on"
    Riggle BA; Greenberg ML; Wang Y; Wissner RF; Zemerov SD; Petersson EJ; Dmochowski IJ
    Org Biomol Chem; 2017 Oct; 15(42):8883-8887. PubMed ID: 29058007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. (129)Xe NMR Relaxation-Based Macromolecular Sensing.
    Gomes MD; Dao P; Jeong K; Slack CC; Vassiliou CC; Finbloom JA; Francis MB; Wemmer DE; Pines A
    J Am Chem Soc; 2016 Aug; 138(31):9747-50. PubMed ID: 27472048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and Physicochemical Properties of Cryptophazane-A Soluble and Functionalizable C
    Vigier C; Fayolle D; El Siblani H; Sopkova-de Oliveira Santos J; Fabis F; Cailly T; Dubost E
    Angew Chem Int Ed Engl; 2022 Nov; 61(46):e202208580. PubMed ID: 36111509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.