These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 23106635)

  • 1. Growing trees in child brains: graph theoretical analysis of electroencephalography-derived minimum spanning tree in 5- and 7-year-old children reflects brain maturation.
    Boersma M; Smit DJ; Boomsma DI; De Geus EJ; Delemarre-van de Waal HA; Stam CJ
    Brain Connect; 2013; 3(1):50-60. PubMed ID: 23106635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Network analysis of resting state EEG in the developing young brain: structure comes with maturation.
    Boersma M; Smit DJ; de Bie HM; Van Baal GC; Boomsma DI; de Geus EJ; Delemarre-van de Waal HA; Stam CJ
    Hum Brain Mapp; 2011 Mar; 32(3):413-25. PubMed ID: 20589941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The minimum spanning tree: an unbiased method for brain network analysis.
    Tewarie P; van Dellen E; Hillebrand A; Stam CJ
    Neuroimage; 2015 Jan; 104():177-88. PubMed ID: 25451472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The trees and the forest: Characterization of complex brain networks with minimum spanning trees.
    Stam CJ; Tewarie P; Van Dellen E; van Straaten EC; Hillebrand A; Van Mieghem P
    Int J Psychophysiol; 2014 Jun; 92(3):129-38. PubMed ID: 24726900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative and Qualitative Comparison of EEG-Based Neural Network Organization in Two Schizophrenia Groups Differing in the Duration of Illness and Disease Burden: Graph Analysis With Application of the Minimum Spanning Tree.
    Jonak K; Krukow P; Jonak KE; Grochowski C; Karakuła-Juchnowicz H
    Clin EEG Neurosci; 2019 Jul; 50(4):231-241. PubMed ID: 30322279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Life-Span Development of Brain Network Integration Assessed with Phase Lag Index Connectivity and Minimum Spanning Tree Graphs.
    Smit DJ; de Geus EJ; Boersma M; Boomsma DI; Stam CJ
    Brain Connect; 2016 May; 6(4):312-25. PubMed ID: 26885699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EEG Functional Connectivity Underlying Emotional Valance and Arousal Using Minimum Spanning Trees.
    Cao R; Hao Y; Wang X; Gao Y; Shi H; Huo S; Wang B; Guo H; Xiang J
    Front Neurosci; 2020; 14():355. PubMed ID: 32457566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-scale network organization of EEG functional connectivity in newborn infants.
    Tóth B; Urbán G; Háden GP; Márk M; Török M; Stam CJ; Winkler I
    Hum Brain Mapp; 2017 Aug; 38(8):4019-4033. PubMed ID: 28488308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graph analysis of EEG resting state functional networks in dyslexic readers.
    Fraga González G; Van der Molen MJW; Žarić G; Bonte M; Tijms J; Blomert L; Stam CJ; Van der Molen MW
    Clin Neurophysiol; 2016 Sep; 127(9):3165-3175. PubMed ID: 27476025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disrupted Brain Network in Children with Autism Spectrum Disorder.
    Zeng K; Kang J; Ouyang G; Li J; Han J; Wang Y; Sokhadze EM; Casanova MF; Li X
    Sci Rep; 2017 Nov; 7(1):16253. PubMed ID: 29176705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional brain network analysis using minimum spanning trees in Multiple Sclerosis: an MEG source-space study.
    Tewarie P; Hillebrand A; Schoonheim MM; van Dijk BW; Geurts JJ; Barkhof F; Polman CH; Stam CJ
    Neuroimage; 2014 Mar; 88():308-18. PubMed ID: 24161625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Indications for network regularization during absence seizures: weighted and unweighted graph theoretical analyses.
    Ponten SC; Douw L; Bartolomei F; Reijneveld JC; Stam CJ
    Exp Neurol; 2009 May; 217(1):197-204. PubMed ID: 19232346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human brain networks in physiological aging: a graph theoretical analysis of cortical connectivity from EEG data.
    Vecchio F; Miraglia F; Bramanti P; Rossini PM
    J Alzheimers Dis; 2014; 41(4):1239-49. PubMed ID: 24820018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simple and difficult mathematics in children: a minimum spanning tree EEG network analysis.
    Vourkas M; Karakonstantaki E; Simos PG; Tsirka V; Antonakakis M; Vamvoukas M; Stam C; Dimitriadis S; Micheloyannis S
    Neurosci Lett; 2014 Jul; 576():28-33. PubMed ID: 24887585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain network analysis of EEG functional connectivity during imagery hand movements.
    Demuru M; Fara F; Fraschini M
    J Integr Neurosci; 2013 Dec; 12(4):441-7. PubMed ID: 24372064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of epoch length on estimated EEG functional connectivity and brain network organisation.
    Fraschini M; Demuru M; Crobe A; Marrosu F; Stam CJ; Hillebrand A
    J Neural Eng; 2016 Jun; 13(3):036015. PubMed ID: 27137952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [ELECTROPHYSIOLOGIC ANALYSIS OF MENTAL ARITHMETIC TASK BY THE "MINIMUM SPANNING TREE" METHOD].
    Boha R; Tóth Brigitta ; Kardos Z; Bálint F; Gaál ZA; Molnár M
    Ideggyogy Sz; 2016 Mar; 69(5-6):169-76. PubMed ID: 27468606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graph analysis of functional brain network topology using minimum spanning tree in driver drowsiness.
    Chen J; Wang H; Hua C; Wang Q; Liu C
    Cogn Neurodyn; 2018 Dec; 12(6):569-581. PubMed ID: 30483365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficiency of a "small-world" brain network depends on consciousness level: a resting-state FMRI study.
    Uehara T; Yamasaki T; Okamoto T; Koike T; Kan S; Miyauchi S; Kira J; Tobimatsu S
    Cereb Cortex; 2014 Jun; 24(6):1529-39. PubMed ID: 23349223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frontal Functional Network Disruption Associated with Amyotrophic Lateral Sclerosis: An fNIRS-Based Minimum Spanning Tree Analysis.
    Borgheai SB; McLinden J; Mankodiya K; Shahriari Y
    Front Neurosci; 2020; 14():613990. PubMed ID: 33424544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.