BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 23106854)

  • 1. Probing local electromechanical effects in highly conductive electrolytes.
    Balke N; Tselev A; Arruda TM; Jesse S; Chu YH; Kalinin SV
    ACS Nano; 2012 Nov; 6(11):10139-46. PubMed ID: 23106854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-frequency electromechanical imaging of ferroelectrics in a liquid environment.
    Balke N; Jesse S; Chu YH; Kalinin SV
    ACS Nano; 2012 Jun; 6(6):5559-65. PubMed ID: 22571634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ studies of nanoscale electromechanical behavior of nacre under flexural stresses using band excitation PFM.
    Li T; Chen L; Zeng K
    Acta Biomater; 2013 Apr; 9(4):5903-12. PubMed ID: 23305937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A decade of piezoresponse force microscopy: progress, challenges, and opportunities.
    Kalinin SV; Rar A; Jesse S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Dec; 53(12):2226-52. PubMed ID: 17186903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intermittent contact mode piezoresponse force microscopy in a liquid environment.
    Rodriguez BJ; Jesse S; Habelitz S; Proksch R; Kalinin SV
    Nanotechnology; 2009 May; 20(19):195701. PubMed ID: 19420645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Force microscopy of layering and friction in an ionic liquid.
    Hoth J; Hausen F; Müser MH; Bennewitz R
    J Phys Condens Matter; 2014 Jul; 26(28):284110. PubMed ID: 24919549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlation between ion diffusional motion and ionic conductivity for different electrolytes based on ionic liquid.
    Kaur DP; Yamada K; Park JS; Sekhon SS
    J Phys Chem B; 2009 Apr; 113(16):5381-90. PubMed ID: 19323513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Higher-order electromechanical response of thin films by contact resonance piezoresponse force microscopy.
    Harnagea C; Pignolet A; Alexe M; Hesse D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Dec; 53(12):2309-22. PubMed ID: 17186913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing electromechanical behaviors by datacube piezoresponse force microscopy in ambient and aqueous environments.
    Cui A; Wolf P; Ye Y; Hu Z; Dujardin A; Huang Z; Jiang K; Shang L; Ye M; Sun H; Chu J
    Nanotechnology; 2019 Jun; 30(23):235701. PubMed ID: 30780144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High resolution electromechanical imaging of ferroelectric materials in a liquid environment by piezoresponse force microscopy.
    Rodriguez BJ; Jesse S; Baddorf AP; Kalinin SV
    Phys Rev Lett; 2006 Jun; 96(23):237602. PubMed ID: 16803404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards local electromechanical probing of cellular and biomolecular systems in a liquid environment.
    Kalinin SV; Rodriguez BJ; Jesse S; Seal K; Proksch R; Hohlbauch S; Revenko I; Thompson GL; Vertegel AA
    Nanotechnology; 2007 Oct; 18(42):424020. PubMed ID: 21730453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct measurement of the strength of single ionic bonds between hydrated charges.
    Spruijt E; van den Berg SA; Cohen Stuart MA; van der Gucht J
    ACS Nano; 2012 Jun; 6(6):5297-303. PubMed ID: 22559075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dye-sensitized TiO2 solar cells using imidazolium-type ionic liquid crystal systems as effective electrolytes.
    Yamanaka N; Kawano R; Kubo W; Masaki N; Kitamura T; Wada Y; Watanabe M; Yanagida S
    J Phys Chem B; 2007 May; 111(18):4763-9. PubMed ID: 17474701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative Electromechanical Atomic Force Microscopy.
    Collins L; Liu Y; Ovchinnikova OS; Proksch R
    ACS Nano; 2019 Jul; 13(7):8055-8066. PubMed ID: 31268678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ionic liquids for soft functional materials with carbon nanotubes.
    Fukushima T; Aida T
    Chemistry; 2007; 13(18):5048-58. PubMed ID: 17516613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AFM-based nanotribological and electrical characterization of ultrathin wear-resistant ionic liquid films.
    Bhushan B; Palacio M; Kinzig B
    J Colloid Interface Sci; 2008 Jan; 317(1):275-87. PubMed ID: 17936778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Structure of the Electric Double Layer of the Protic Ionic Liquid [Dema][TfO] Analyzed by Atomic Force Spectroscopy.
    Rodenbücher C; Chen Y; Wippermann K; Kowalski PM; Giesen M; Mayer D; Hausen F; Korte C
    Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Applications of subsurface microscopy.
    Tetard L; Passian A; Farahi RH; Voy BH; Thundat T
    Methods Mol Biol; 2012; 926():331-43. PubMed ID: 22975973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Remarkable impact of water on the discharge performance of a silicon-air battery.
    Cohn G; Macdonald DD; Ein-Eli Y
    ChemSusChem; 2011 Aug; 4(8):1124-9. PubMed ID: 21766461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physical properties of proton conducting membranes based on a protic ionic liquid.
    Martinelli A; Matic A; Jacobsson P; Börjesson L; Fernicola A; Panero S; Scrosati B; Ohno H
    J Phys Chem B; 2007 Nov; 111(43):12462-7. PubMed ID: 17927237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.