BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 2310744)

  • 1. Regulation of Ca2+ transport in brain mitochondria. II. The mechanism of the adenine nucleotides enhancement of Ca2+ uptake and retention.
    Rottenberg H; Marbach M
    Biochim Biophys Acta; 1990 Mar; 1016(1):87-98. PubMed ID: 2310744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adenine nucleotides regulate Ca2+ transport in brain mitochondria.
    Rottenberg H; Marbach M
    FEBS Lett; 1989 Apr; 247(2):483-6. PubMed ID: 2497035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of Ca2+ transport in brain mitochondria. I. The mechanism of spermine enhancement of Ca2+ uptake and retention.
    Rottenberg H; Marbach M
    Biochim Biophys Acta; 1990 Mar; 1016(1):77-86. PubMed ID: 2310743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of Ca2(+)-induced large-amplitude swelling of liver and heart mitochondria by cyclosporin is probably caused by the inhibitor binding to mitochondrial-matrix peptidyl-prolyl cis-trans isomerase and preventing it interacting with the adenine nucleotide translocase.
    Halestrap AP; Davidson AM
    Biochem J; 1990 May; 268(1):153-60. PubMed ID: 2160810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alloxan effects on mitochondria in vitro: correlation between endogenous adenine nucleotides and efflux of Ca2+.
    Boquist L
    Biochem Int; 1984 Nov; 9(5):637-41. PubMed ID: 6525199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlated effluxes of adenine nucleotides, Mg2+ and Ca2+ induced in rat-liver mitochondria by external Ca2+ and phosphate.
    Zoccarato F; Rugolo M; Siliprandi D; Siliprandi N
    Eur J Biochem; 1981 Feb; 114(2):195-9. PubMed ID: 7215353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Closure of Ca2+-dependent pores by cyclosporin A: the role of magnesium ions, adenine nucleotides, and conformation status of the ADP/ATP antiporter].
    Andreev AIu; Mikhaĭlova LM; Starkov AA
    Biokhimiia; 1994 Oct; 59(10):1589-97. PubMed ID: 7819399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of Ca2+ efflux from heart mitochondria.
    Harris EJ
    Biochem J; 1979 Mar; 178(3):673-80. PubMed ID: 454375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of the ADP/ATP carrier in calcium-induced perturbations of the mitochondrial inner membrane permeability: importance of the orientation of the nucleotide binding site.
    Lê Quôc K; Lê Quôc D
    Arch Biochem Biophys; 1988 Sep; 265(2):249-57. PubMed ID: 2844116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of extramitochondrial ADP on permeability transition of mouse liver mitochondria.
    Gizatullina ZZ; Chen Y; Zierz S; Gellerich FN
    Biochim Biophys Acta; 2005 Jan; 1706(1-2):98-104. PubMed ID: 15620369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the mechanism by which Mg2+ and adenine nucleotides restore membrane potential in rat liver mitochondria deenergized by Ca2+ and phosphate.
    Toninello A; Siliprandi D; Siliprandi N
    Biochem Biophys Res Commun; 1983 Mar; 111(3):792-7. PubMed ID: 6838586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of matrix Ca2+ content by the ADP/ATP carrier in brown adipose tissue mitochondria. Influence of membrane lipid composition.
    Chávez E; Moreno-Sánchez R; Torres-Marquez ME; Zazueta C; Bravo C; Rodríquez-Enríquez S; García C; Rodriguez JS; Martinez F
    J Bioenerg Biomembr; 1996 Feb; 28(1):69-76. PubMed ID: 8786240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Net adenine nucleotide transport in rat kidney mitochondria.
    Hagen T; Joyal JL; Henke W; Aprille JR
    Arch Biochem Biophys; 1993 Jun; 303(2):195-207. PubMed ID: 8512308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Liver mitochondrial pyrophosphate concentration is increased by Ca2+ and regulates the intramitochondrial volume and adenine nucleotide content.
    Davidson AM; Halestrap AP
    Biochem J; 1987 Sep; 246(3):715-23. PubMed ID: 2825649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of oxidative phosphorylation by a Ca2+-induced diminution of the adenine nucleotide translocator.
    Moreno-Sánchez R
    Biochim Biophys Acta; 1983 Aug; 724(2):278-85. PubMed ID: 6309222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The ADP and ATP transport in mitochondria and its carrier.
    Klingenberg M
    Biochim Biophys Acta; 2008 Oct; 1778(10):1978-2021. PubMed ID: 18510943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic, binding and ultrastructural properties of the beef heart adenine nucleotide carrier protein after incorporation into phospholipid vesicles.
    Brandolin G; Doussiere J; Gulik A; Gulik-Krzywicki T; Lauquin GJ; Vignais PV
    Biochim Biophys Acta; 1980 Oct; 592(3):592-614. PubMed ID: 6251872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium efflux mechanism in sperm mitochondria.
    Breitbart H; Rubinstein S; Gruberger M
    Biochim Biophys Acta; 1996 Jun; 1312(2):79-84. PubMed ID: 8672542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adenine nucleotide translocase-dependent anion transport in pea chloroplasts.
    Woldegiorgis G; Voss S; Shrago E; Werner-Washburne M; Keegstra K
    Biochim Biophys Acta; 1985 Dec; 810(3):340-5. PubMed ID: 2998460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature dependence of the atractyloside-induced mitochondrial Ca2+ release.
    Chávez E; Osornio A
    Int J Biochem; 1988; 20(7):731-6. PubMed ID: 3181602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.