These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 23107744)
1. Feasibility of conventional and Roundup Ready® soybeans discrimination by different near infrared reflectance technologies. Esteve Agelet L; Gowen AA; Hurburgh CR; O'Donell CP Food Chem; 2012 Sep; 134(2):1165-72. PubMed ID: 23107744 [TBL] [Abstract][Full Text] [Related]
2. Differences between conventional and glyphosate tolerant soybeans and moisture effect in their discrimination by near infrared spectroscopy. Esteve Agelet L; Armstrong PR; Tallada JG; Hurburgh CR Food Chem; 2013 Dec; 141(3):1895-901. PubMed ID: 23870907 [TBL] [Abstract][Full Text] [Related]
3. Discrimination of transgenic soybean seeds by terahertz spectroscopy. Liu W; Liu C; Chen F; Yang J; Zheng L Sci Rep; 2016 Oct; 6():35799. PubMed ID: 27782205 [TBL] [Abstract][Full Text] [Related]
4. [Study of discrimination of corn seed based on near-infrared spectra and artificial neural network model]. Chen J; Chen X; Li W; Wang JH; Han DH Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Aug; 28(8):1806-9. PubMed ID: 18975808 [TBL] [Abstract][Full Text] [Related]
6. Chemical composition of glyphosate-tolerant soybean 40-3-2 grown in Europe remains equivalent with that of conventional soybean (Glycine max L.). Harrigan GG; Ridley WP; Riordan SG; Nemeth MA; Sorbet R; Trujillo WA; Breeze ML; Schneider RW J Agric Food Chem; 2007 Jul; 55(15):6160-8. PubMed ID: 17608426 [TBL] [Abstract][Full Text] [Related]
7. Feasibility study on the use of near infrared spectroscopy to determine flavanols in grape seeds. Ferrer-Gallego R; Hernández-Hierro JM; Rivas-Gonzalo JC; Escribano-Bailón MT Talanta; 2010 Oct; 82(5):1778-83. PubMed ID: 20875576 [TBL] [Abstract][Full Text] [Related]
8. Stability in the composition equivalence of grain from insect-protected maize and seed from glyphosate-tolerant soybean to conventional counterparts over multiple seasons, locations, and breeding germplasms. Zhou J; Harrigan GG; Berman KH; Webb EG; Klusmeyer TH; Nemeth MA J Agric Food Chem; 2011 Aug; 59(16):8822-8. PubMed ID: 21797257 [TBL] [Abstract][Full Text] [Related]
9. Discrimination of transgenic and conventional soybean seeds by fourier transform infrared photoacoustic spectroscopy. Caires AR; Teixeira MR; Súarez YR; Andrade LH; Lima SM Appl Spectrosc; 2008 Sep; 62(9):1044-7. PubMed ID: 18801246 [No Abstract] [Full Text] [Related]
10. [Study on quantitative analysis with near-infrared spectra using latent root regression model]. Zhang LD; Qi XM; Yang JH; Zhao LL; Li JH; Yan YL Guang Pu Xue Yu Guang Pu Fen Xi; 2002 Feb; 22(1):54-6. PubMed ID: 12940027 [TBL] [Abstract][Full Text] [Related]
11. Enhanced Single Seed Trait Predictions in Soybean (Glycine max) and Robust Calibration Model Transfer with Near-Infrared Reflectance Spectroscopy. Hacisalihoglu G; Gustin JL; Louisma J; Armstrong P; Peter GF; Walker AR; Settles AM J Agric Food Chem; 2016 Feb; 64(5):1079-86. PubMed ID: 26771201 [TBL] [Abstract][Full Text] [Related]
12. Feasibility study on identification of green, black and Oolong teas using near-infrared reflectance spectroscopy based on support vector machine (SVM). Chen Q; Zhao J; Fang CH; Wang D Spectrochim Acta A Mol Biomol Spectrosc; 2007 Mar; 66(3):568-74. PubMed ID: 16859975 [TBL] [Abstract][Full Text] [Related]
13. [The application of near-infrared reflectance spectroscopy in seeds quality certification]. Ren WB; Han JG; Zhang YW; Guo HQ Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Mar; 28(3):555-8. PubMed ID: 18536411 [TBL] [Abstract][Full Text] [Related]
14. Rapid characterization of transgenic and non-transgenic soybean oils by chemometric methods using NIR spectroscopy. Luna AS; da Silva AP; Pinho JS; Ferré J; Boqué R Spectrochim Acta A Mol Biomol Spectrosc; 2013 Jan; 100():115-9. PubMed ID: 22502875 [TBL] [Abstract][Full Text] [Related]
15. Protein and oil composition predictions of single soybeans by transmission Raman spectroscopy. Schulmerich MV; Walsh MJ; Gelber MK; Kong R; Kole MR; Harrison SK; McKinney J; Thompson D; Kull LS; Bhargava R J Agric Food Chem; 2012 Aug; 60(33):8097-102. PubMed ID: 22746340 [TBL] [Abstract][Full Text] [Related]
16. [Predicting the chemical composition of intact kernels in maize hybrids by near infrared reflectance spectroscopy]. Wei LM; Jiang HY; Li JH; Yan YL; Dai JR Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Sep; 25(9):1404-7. PubMed ID: 16379276 [TBL] [Abstract][Full Text] [Related]
17. Glyphosate-tolerant soybeans remain compositionally equivalent to conventional soybeans (Glycine max L.) during three years of field testing. McCann MC; Liu K; Trujillo WA; Dobert RC J Agric Food Chem; 2005 Jun; 53(13):5331-5. PubMed ID: 15969514 [TBL] [Abstract][Full Text] [Related]
18. Quantitative-competitive polymerase chain reaction coupled with slab gel and capillary electrophoresis for the detection of roundup ready soybean and maize. Dinelli G; Bonetti A; Marotti I; Minelli M; Navarrete-Casas M; Segura-Carretero A; Fernández-Gutiérrez A Electrophoresis; 2006 Oct; 27(20):4029-38. PubMed ID: 16983630 [TBL] [Abstract][Full Text] [Related]
19. Fast and robust discrimination of almonds (Prunus amygdalus) with respect to their bitterness by using near infrared and partial least squares-discriminant analysis. Borràs E; Amigo JM; van den Berg F; Boqué R; Busto O Food Chem; 2014 Jun; 153():15-9. PubMed ID: 24491694 [TBL] [Abstract][Full Text] [Related]
20. [Rapid and nondestructive discrimination of hybrid maize seed purity using near infrared spectroscopy]. Huang YY; Zhu LW; Li JH; Wang JH; Sun BQ; Sun Q Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Mar; 31(3):661-4. PubMed ID: 21595213 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]