BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 23107833)

  • 1. Design and validity of a miniaturized open-field aberrometer.
    Bhatt UK; Sheppard AL; Shah S; Dua HS; Mihashi T; Yamaguchi T; Wolffsohn JS
    J Cataract Refract Surg; 2013 Jan; 39(1):36-40. PubMed ID: 23107833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation of a Clinical Aberrometer Using Pyramidal Wavefront Sensing.
    Singh NK; Jaskulski M; Ramasubramanian V; Meyer D; Reed O; Rickert ME; Bradley A; Kollbaum PS
    Optom Vis Sci; 2019 Oct; 96(10):733-744. PubMed ID: 31592956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Repeatability of internal aberrometry with a new simultaneous capture aberrometer/corneal topographer.
    Gifford P; Swarbrick HA
    Optom Vis Sci; 2012 Jun; 89(6):929-38. PubMed ID: 22543999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Precision of a commercial hartmann-shack aberrometer: limits of total wavefront laser vision correction.
    López-Miguel A; Maldonado MJ; Belzunce A; Barrio-Barrio J; Coco-Martín MB; Nieto JC
    Am J Ophthalmol; 2012 Nov; 154(5):799-807.e5. PubMed ID: 22902046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of the SVOne: A Handheld, Smartphone-Based Autorefractor.
    Ciuffreda KJ; Rosenfield M
    Optom Vis Sci; 2015 Dec; 92(12):1133-9. PubMed ID: 26540478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Precision and agreement of higher order aberrations measured with ray tracing and Hartmann-Shack aberrometers.
    Xu Z; Hua Y; Qiu W; Li G; Wu Q
    BMC Ophthalmol; 2018 Jan; 18(1):18. PubMed ID: 29374460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Precision of higher-order aberration measurements with a new Placido-disk topographer and Hartmann-Shack wavefront sensor.
    López-Miguel A; Martínez-Almeida L; González-García MJ; Coco-Martín MB; Sobrado-Calvo P; Maldonado MJ
    J Cataract Refract Surg; 2013 Feb; 39(2):242-9. PubMed ID: 23142546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of refractive error measures by the IRX3 aberrometer and autorefraction.
    McCullough SJ; Little JA; Breslin KM; Saunders KJ
    Optom Vis Sci; 2014 Oct; 91(10):1183-90. PubMed ID: 25192432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accuracy of the Hand-held Wavefront Aberrometer in Measurement of Refractive Error.
    Han JY; Yoon S; Brown NS; Han SH; Han J
    Korean J Ophthalmol; 2020 Jun; 34(3):227-234. PubMed ID: 32495531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of a Portable Wavefront Aberrometer for Community Screening Refraction in the Elderly.
    Plum W; Varadaraj V; Dosto N; Thompson SL; Gajwani P; Friedman DS
    Optom Vis Sci; 2021 Mar; 98(3):289-294. PubMed ID: 33633020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Repeatability of a Commercially Available Adaptive Optics Visual Simulator and Aberrometer in Normal and Keratoconic Eyes.
    Shetty R; Kochar S; Grover T; Khamar P; Kusumgar P; Sainani K; Sinha Roy A
    J Refract Surg; 2017 Nov; 33(11):769-772. PubMed ID: 29117417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Repeatability of topographic and aberrometric measurements at different accommodative states using a combined topographer and open-view aberrometer.
    Gabriel C; Klaproth OK; Titke C; Baumeister M; Bühren J; Kohnen T
    J Cataract Refract Surg; 2015 Apr; 41(4):806-11. PubMed ID: 25840305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of ocular aberrations measured by a Fourier-based Hartmann-Shack and Zernike-based Tscherning aberrometer before and after laser in situ keratomileusis.
    Sáles CS; Manche EE
    J Cataract Refract Surg; 2015 Sep; 41(9):1820-5. PubMed ID: 26603389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ocular higher-order aberrations in myopia and skiascopic wavefront repeatability.
    Zadok D; Levy Y; Segal O; Barkana Y; Morad Y; Avni I
    J Cataract Refract Surg; 2005 Jun; 31(6):1128-32. PubMed ID: 16039485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wavefront aberrometry repeatability and agreement-A comparison between Pentacam AXL Wave, iTrace and OPD-Scan III.
    Wan KH; Liao XL; Yu M; Tsui RWY; Chow VWS; Chong KKL; Chan TCY
    Ophthalmic Physiol Opt; 2022 Nov; 42(6):1326-1337. PubMed ID: 36102169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the SVOne Handheld Autorefractor in a Pediatric Population.
    Rosenfield M; Ciuffreda KJ
    Optom Vis Sci; 2017 Feb; 94(2):159-165. PubMed ID: 27668640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Repeatability of aberrometric measurements with a new instrument for vision analysis based on adaptive optics.
    Otero C; Vilaseca M; Arjona M; Martínez-Roda JA; Pujol J
    J Refract Surg; 2015 Mar; 31(3):188-94. PubMed ID: 25751836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinical evaluation of the repeatability of ocular aberrometry obtained with a new pyramid wavefront sensor.
    Plaza-Puche AB; Salerno LC; Versaci F; Romero D; Alio JL
    Eur J Ophthalmol; 2019 Nov; 29(6):585-592. PubMed ID: 30516061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and validation of a scanning Shack Hartmann aberrometer for measurements of the eye over a wide field of view.
    Wei X; Thibos L
    Opt Express; 2010 Jan; 18(2):1134-43. PubMed ID: 20173936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aberrometry Repeatability and Agreement with Autorefraction.
    Nguyen MT; Berntsen DA
    Optom Vis Sci; 2017 Sep; 94(9):886-893. PubMed ID: 28727613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.