These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 23107833)

  • 21. Comparison of monochromatic aberrations in young adults with different visual acuity and refractive errors.
    Yazar S; Hewitt AW; Forward H; McKnight CM; Tan A; Mountain JA; Mackey DA
    J Cataract Refract Surg; 2014 Mar; 40(3):441-9. PubMed ID: 24417894
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intraoperative, real-time aberrometry during refractive cataract surgery with a sequentially shifting wavefront device.
    Krueger RR; Shea W; Zhou Y; Osher R; Slade SG; Chang DF
    J Refract Surg; 2013 Sep; 29(9):630-5. PubMed ID: 24016348
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A comparison of a traditional and wavefront autorefraction.
    Lebow KA; Campbell CE
    Optom Vis Sci; 2014 Oct; 91(10):1191-8. PubMed ID: 25198541
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Repeatability of peripheral aberrations in young emmetropes.
    Baskaran K; Theagarayan B; Carius S; Gustafsson J
    Optom Vis Sci; 2010 Oct; 87(10):751-9. PubMed ID: 20818283
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Utility of an open field Shack-Hartmann aberrometer for measurement of refractive error in infants and young children.
    Harvey EM; Miller JM; Schwiegerling J
    J AAPOS; 2013 Oct; 17(5):494-500. PubMed ID: 24160970
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Validation of a clinical Shack-Hartmann aberrometer.
    Cheng X; Himebaugh NL; Kollbaum PS; Thibos LN; Bradley A
    Optom Vis Sci; 2003 Aug; 80(8):587-95. PubMed ID: 12917578
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Outcomes of wavefront-guided laser in situ keratomileusis using a new-generation Hartmann-Shack aberrometer in patients with high myopia.
    Schallhorn SC; Venter JA; Hannan SJ; Hettinger KA
    J Cataract Refract Surg; 2015 Sep; 41(9):1810-9. PubMed ID: 26603388
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Wavefront aberrometry: comparing and profiling higher-order aberrations produced by intraocular lenses in vitro using a physical model eye system and Hartman-Shack aberrometry.
    McKelvie J; Ku JY; McArdle B; McGhee C
    J Cataract Refract Surg; 2009 Mar; 35(3):547-55. PubMed ID: 19251150
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of spherical intraocular lens implantation and conventional laser in situ keratomileusis on peripheral ocular aberrations.
    Mathur A; Atchison DA
    J Cataract Refract Surg; 2010 Jul; 36(7):1127-34. PubMed ID: 20610090
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of aberrometer and autorefractor measures of refractive error in children.
    Martinez AA; Pandian A; Sankaridurg P; Rose K; Huynh SC; Mitchell P
    Optom Vis Sci; 2006 Nov; 83(11):811-7. PubMed ID: 17106401
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of mydriatic eye drops on wavefront sensing with the Zywave aberrometer.
    Taneri S; Oehler S; Azar DT
    J Refract Surg; 2011 Sep; 27(9):678-85. PubMed ID: 21446641
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Repeatability of Wavefront Aberration Measurements With a Placido-Based Topographer in Normal and Keratoconic Eyes.
    Ortiz-Toquero S; Rodriguez G; de Juan V; Martin R
    J Refract Surg; 2016 May; 32(5):338-44. PubMed ID: 27163620
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Profile of off-axis higher order aberrations and its variation with time among various refractive error groups.
    Philip K; Sankaridurg PR; Ale JB; Naduvilath TJ; Mitchell P
    Vision Res; 2018 Dec; 153():111-123. PubMed ID: 30201474
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of higher order aberrations measured by NIDEK OPD-Scan dynamic skiascopy and Zeiss WASCA Hartmann-Shack aberrometers.
    Cerviño A; Hosking SL; Montés-Micó R
    J Refract Surg; 2008 Oct; 24(8):790-6. PubMed ID: 18856232
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Accuracy of an automated refractor using a Hartmann-Shack sensor after corneal refractive surgery and cataract surgery.
    Park JH; Kim MJ; Park JH; Song IS; Kim JY; Tchah H
    J Cataract Refract Surg; 2015 Sep; 41(9):1889-97. PubMed ID: 26603398
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of the Adaptive Optics Vision Analyzer and the KR-1 W for measuring ocular wave aberrations.
    Otero C; Vilaseca M; Arjona M; Martínez-Roda JA; Pujol J
    Clin Exp Optom; 2017 Jan; 100(1):26-32. PubMed ID: 27432594
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of higher order aberrations after implantable Collamer Lens implantation and wavefront-guided LASEK in high myopia.
    Shin JY; Ahn H; Seo KY; Kim EK; Kim TI
    J Refract Surg; 2012 Feb; 28(2):106-11. PubMed ID: 22074464
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Higher order ocular aberrations and their relation to refractive error and ocular biometry in children.
    Little JA; McCullough SJ; Breslin KM; Saunders KJ
    Invest Ophthalmol Vis Sci; 2014 Jul; 55(8):4791-800. PubMed ID: 25028356
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Operator-induced errors in Hartmann-Shack wavefront sensing: model eye study.
    Cervino A; Hosking SL; Dunne MC
    J Cataract Refract Surg; 2007 Jan; 33(1):115-21. PubMed ID: 17189805
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Corneal higher order aberrations after LASIK for high myopia with a fast repetition rate excimer laser, optimized ablation profile, and femtosecond laser-assisted flap.
    Vega-Estrada A; Alió JL; Arba Mosquera S; Moreno LJ
    J Refract Surg; 2012 Oct; 28(10):689-96. PubMed ID: 23061998
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.