BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 23107957)

  • 1. Inverted colloidal crystal scaffolds with induced pluripotent stem cells for nerve tissue engineering.
    Kuo YC; Chen CW
    Colloids Surf B Biointerfaces; 2013 Feb; 102():789-94. PubMed ID: 23107957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TATVHL peptide-grafted alginate/poly(γ-glutamic acid) scaffolds with inverted colloidal crystal topology for neuronal differentiation of iPS cells.
    Kuo YC; Chung CY
    Biomaterials; 2012 Dec; 33(35):8955-66. PubMed ID: 22998813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accelerated nerve regeneration using induced pluripotent stem cells in chitin-chitosan-gelatin scaffolds with inverted colloidal crystal geometry.
    Kuo YC; Lin CC
    Colloids Surf B Biointerfaces; 2013 Mar; 103():595-600. PubMed ID: 23261585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differentiation of induced pluripotent stem cells toward neurons in hydrogel biomaterials.
    Kuo YC; Chang YH
    Colloids Surf B Biointerfaces; 2013 Feb; 102():405-11. PubMed ID: 23010124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuronal differentiation of induced pluripotent stem cells in hybrid polyester scaffolds with heparinized surface.
    Kuo YC; Wang CT
    Colloids Surf B Biointerfaces; 2012 Dec; 100():9-15. PubMed ID: 22750107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuroregeneration of Induced Pluripotent Stem Cells in Polyacrylamide-Chitosan Inverted Colloidal Crystal Scaffolds with Poly(lactide-co-glycolide) Nanoparticles and Transactivator of Transcription von Hippel-Lindau Peptide.
    Kuo YC; Chen CW
    Tissue Eng Part A; 2017 Apr; 23(7-8):263-274. PubMed ID: 28107800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Material-driven differentiation of induced pluripotent stem cells in neuron growth factor-grafted poly(ε-caprolactone)-poly(β-hydroxybutyrate) scaffolds.
    Kuo YC; Huang MJ
    Biomaterials; 2012 Aug; 33(23):5672-82. PubMed ID: 22591608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Guided differentiation of induced pluripotent stem cells into neuronal lineage in alginate-chitosan-gelatin hydrogels with surface neuron growth factor.
    Kuo YC; Wang CC
    Colloids Surf B Biointerfaces; 2013 Apr; 104():194-9. PubMed ID: 23369755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inverted colloidal crystal scaffolds with laminin-derived peptides for neuronal differentiation of bone marrow stromal cells.
    Kuo YC; Chiu KH
    Biomaterials; 2011 Jan; 32(3):819-31. PubMed ID: 20974492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peptide-modified inverted colloidal crystal scaffolds with bone marrow stromal cells in the treatment for spinal cord injury.
    Yang JT; Kuo YC; Chiu KH
    Colloids Surf B Biointerfaces; 2011 May; 84(1):198-205. PubMed ID: 21251802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A tissue-engineered bioabsorbable nerve conduit created by three-dimensional culture of induced pluripotent stem cell-derived neurospheres.
    Uemura T; Takamatsu K; Ikeda M; Okada M; Kazuki K; Ikada Y; Nakamura H
    Biomed Mater Eng; 2011; 21(5-6):333-9. PubMed ID: 22561252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heparin-conjugated scaffolds with pore structure of inverted colloidal crystals for cartilage regeneration.
    Kuo YC; Tsai YT
    Colloids Surf B Biointerfaces; 2011 Feb; 82(2):616-23. PubMed ID: 21074384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inverted colloidal crystal scaffolds for uniform cartilage regeneration.
    Kuo YC; Tsai YT
    Biomacromolecules; 2010 Mar; 11(3):731-9. PubMed ID: 20158195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functionalized poly(γ-Glutamic Acid) fibrous scaffolds for tissue engineering.
    Gentilini C; Dong Y; May JR; Goldoni S; Clarke DE; Lee BH; Pashuck ET; Stevens MM
    Adv Healthc Mater; 2012 May; 1(3):308-15. PubMed ID: 23184745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering personalized neural tissue by combining induced pluripotent stem cells with fibrin scaffolds.
    Montgomery A; Wong A; Gabers N; Willerth SM
    Biomater Sci; 2015 Feb; 3(2):401-13. PubMed ID: 26218131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mesenchymal stem cell differentiation to neuronal cells on electrospun nanofibrous substrates for nerve tissue engineering.
    Prabhakaran MP; Venugopal JR; Ramakrishna S
    Biomaterials; 2009 Oct; 30(28):4996-5003. PubMed ID: 19539369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An overview of inverted colloidal crystal systems for tissue engineering.
    João CF; Vasconcelos JM; Silva JC; Borges JP
    Tissue Eng Part B Rev; 2014 Oct; 20(5):437-54. PubMed ID: 24328724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrospun poly(epsilon-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering.
    Ghasemi-Mobarakeh L; Prabhakaran MP; Morshed M; Nasr-Esfahani MH; Ramakrishna S
    Biomaterials; 2008 Dec; 29(34):4532-9. PubMed ID: 18757094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biocompatibility evaluation of electrospun aligned poly (propylene carbonate) nanofibrous scaffolds with peripheral nerve tissues and cells in vitro.
    Wang Y; Zhao Z; Zhao B; Qi HX; Peng J; Zhang L; Xu WJ; Hu P; Lu SB
    Chin Med J (Engl); 2011 Aug; 124(15):2361-6. PubMed ID: 21933569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biofunctionalisation of polymeric scaffolds for neural tissue engineering.
    Wang TY; Forsythe JS; Parish CL; Nisbet DR
    J Biomater Appl; 2012 Nov; 27(4):369-90. PubMed ID: 22492199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.