These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 23108161)

  • 21. Self-stacked Co3O4 nanosheets for high-performance lithium ion batteries.
    Wang X; Guan H; Chen S; Li H; Zhai T; Tang D; Bando Y; Golberg D
    Chem Commun (Camb); 2011 Dec; 47(45):12280-2. PubMed ID: 21952231
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Large-scale synthesis and functionalization of hexagonal boron nitride nanosheets.
    Bhimanapati GR; Kozuch D; Robinson JA
    Nanoscale; 2014 Oct; 6(20):11671-5. PubMed ID: 25163394
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Porous Co3O4 nanosheets with extraordinarily high discharge capacity for lithium batteries.
    Zhan F; Geng B; Guo Y
    Chemistry; 2009 Jun; 15(25):6169-74. PubMed ID: 19437475
    [TBL] [Abstract][Full Text] [Related]  

  • 24. NiO nanosheets grown on graphene nanosheets as superior anode materials for Li-ion batteries.
    Zou Y; Wang Y
    Nanoscale; 2011 Jun; 3(6):2615-20. PubMed ID: 21523266
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Clewlike ZnV2O4 hollow spheres: nonaqueous sol-gel synthesis, formation mechanism, and lithium storage properties.
    Xiao L; Zhao Y; Yin J; Zhang L
    Chemistry; 2009 Sep; 15(37):9442-50. PubMed ID: 19672904
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chemically exfoliated boron nitride nanosheets form robust interfacial layers for stable solid-state Li metal batteries.
    Shen B; Zhang TW; Yin YC; Zhu ZX; Lu LL; Ma C; Zhou F; Yao HB
    Chem Commun (Camb); 2019 Jun; 55(53):7703-7706. PubMed ID: 31204744
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The facile synthesis of nickel silicide nanobelts and nanosheets and their application in electrochemical energy storage.
    Zhang HL; Li F; Liu C; Cheng HM
    Nanotechnology; 2008 Apr; 19(16):165606. PubMed ID: 21825650
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Large-scale synthesis of SnO2 nanosheets with high lithium storage capacity.
    Wang C; Zhou Y; Ge M; Xu X; Zhang Z; Jiang JZ
    J Am Chem Soc; 2010 Jan; 132(1):46-7. PubMed ID: 20000321
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hierarchical LiFePO4/C microspheres with high tap density assembled by nanosheets as cathode materials for high-performance Li-ion batteries.
    Wei W; Chen D; Wang R; Guo L
    Nanotechnology; 2012 Nov; 23(47):475401. PubMed ID: 23117189
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Formation of monolayer and few-layer hexagonal boron nitride nanosheets via surface segregation.
    Xu M; Fujita D; Chen H; Hanagata N
    Nanoscale; 2011 Jul; 3(7):2854-8. PubMed ID: 21611645
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hydrogen adsorption on carbon-doped boron nitride nanotube.
    Baierle RJ; Piquini P; Schmidt TM; Fazzio A
    J Phys Chem B; 2006 Oct; 110(42):21184-8. PubMed ID: 17048943
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Carbon nanotubes grown in situ on graphene nanosheets as superior anodes for Li-ion batteries.
    Chen S; Chen P; Wang Y
    Nanoscale; 2011 Oct; 3(10):4323-9. PubMed ID: 21879120
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Large-area vapor-phase growth and characterization of MoS(2) atomic layers on a SiO(2) substrate.
    Zhan Y; Liu Z; Najmaei S; Ajayan PM; Lou J
    Small; 2012 Apr; 8(7):966-71. PubMed ID: 22334392
    [TBL] [Abstract][Full Text] [Related]  

  • 35. α-MnO2 nanotubes: high surface area and enhanced lithium battery properties.
    Li L; Nan C; Lu J; Peng Q; Li Y
    Chem Commun (Camb); 2012 Jul; 48(55):6945-7. PubMed ID: 22674121
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High rate reversibility anode materials of lithium batteries from vapor-grown carbon nanofibers.
    Subramanian V; Zhu H; Wei B
    J Phys Chem B; 2006 Apr; 110(14):7178-83. PubMed ID: 16599483
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Boron carbon nitride nanostructures from salt melts: tunable water-soluble phosphors.
    Lei W; Portehault D; Dimova R; Antonietti M
    J Am Chem Soc; 2011 May; 133(18):7121-7. PubMed ID: 21506566
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metal-Free Dehydrogenation of N-Heterocycles by Ternary h-BCN Nanosheets with Visible Light.
    Zheng M; Shi J; Yuan T; Wang X
    Angew Chem Int Ed Engl; 2018 May; 57(19):5487-5491. PubMed ID: 29473268
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Wintersweet-flower-like CoFe2O4/MWCNTs hybrid material for high-capacity reversible lithium storage.
    Wang Y; Park J; Sun B; Ahn H; Wang G
    Chem Asian J; 2012 Aug; 7(8):1940-6. PubMed ID: 22593078
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Solution-grown germanium nanowire anodes for lithium-ion batteries.
    Chockla AM; Klavetter KC; Mullins CB; Korgel BA
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4658-64. PubMed ID: 22894797
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.