These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 23108161)

  • 41. Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage.
    Chen JS; Tan YL; Li CM; Cheah YL; Luan D; Madhavi S; Boey FY; Archer LA; Lou XW
    J Am Chem Soc; 2010 May; 132(17):6124-30. PubMed ID: 20392065
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ternary Cu₂SnS₃ cabbage-like nanostructures: large-scale synthesis and their application in Li-ion batteries with superior reversible capacity.
    Qu B; Li H; Zhang M; Mei L; Chen L; Wang Y; Li Q; Wang T
    Nanoscale; 2011 Oct; 3(10):4389-93. PubMed ID: 21927737
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A Boron Nitride Nanosheets Composite Membrane for a Long-Life Zinc-Based Flow Battery.
    Hu J; Yue M; Zhang H; Yuan Z; Li X
    Angew Chem Int Ed Engl; 2020 Apr; 59(17):6715-6719. PubMed ID: 32022372
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Facile and rapid synthesis of highly porous wirelike TiO2 as anodes for lithium-ion batteries.
    Wang HE; Lu ZG; Xi LJ; Ma RG; Wang CD; Zapien JA; Bello I
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1608-13. PubMed ID: 22360340
    [TBL] [Abstract][Full Text] [Related]  

  • 45. High-performance lithium-ion anodes with hierarchically assembled single-crystal SnO2 nanoflake spheres.
    Liu Z; Bai H; Sun DD
    Chem Asian J; 2012 Oct; 7(10):2381-5. PubMed ID: 22811407
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Facile synthesis of novel tunable highly porous CuO nanorods for high rate lithium battery anodes with realized long cycle life and high reversible capacity.
    Wang L; Gong H; Wang C; Wang D; Tang K; Qian Y
    Nanoscale; 2012 Nov; 4(21):6850-5. PubMed ID: 23034730
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery.
    Wang YQ; Gu L; Guo YG; Li H; He XQ; Tsukimoto S; Ikuhara Y; Wan LJ
    J Am Chem Soc; 2012 May; 134(18):7874-9. PubMed ID: 22530994
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Flower stamen-like porous boron carbon nitride nanoscrolls for water cleaning.
    Wang J; Hao J; Liu D; Qin S; Chen C; Yang C; Liu Y; Yang T; Fan Y; Chen Y; Lei W
    Nanoscale; 2017 Jul; 9(28):9787-9791. PubMed ID: 28678300
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Carbon nanohorns as a high-performance carrier for MnO2 anode in lithium-ion batteries.
    Lai H; Li J; Chen Z; Huang Z
    ACS Appl Mater Interfaces; 2012 May; 4(5):2325-8. PubMed ID: 22545767
    [TBL] [Abstract][Full Text] [Related]  

  • 50. One-step hydrothermal synthesis of mesoporous anatase TiO₂ microsphere and interfacial control for enhanced lithium storage performance.
    Lee KH; Song SW
    ACS Appl Mater Interfaces; 2011 Sep; 3(9):3697-703. PubMed ID: 21848346
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Tuning the Chemical Hardness of Boron Nitride Nanosheets by Doping Carbon for Enhanced Adsorption Capacity.
    Li H; Zhu S; Zhang M; Wu P; Pang J; Zhu W; Jiang W; Li H
    ACS Omega; 2017 Sep; 2(9):5385-5394. PubMed ID: 31457807
    [TBL] [Abstract][Full Text] [Related]  

  • 52. TiO2(B) nanoribbons as negative electrode material for lithium ion batteries with high rate performance.
    Beuvier T; Richard-Plouet M; Mancini-Le Granvalet M; Brousse T; Crosnier O; Brohan L
    Inorg Chem; 2010 Sep; 49(18):8457-64. PubMed ID: 20722375
    [TBL] [Abstract][Full Text] [Related]  

  • 53. One-step template-free synthesis of 3D functionalized flower-like boron nitride nanosheets for NH
    Yang C; Wang J; Chen Y; Liu D; Huang S; Lei W
    Nanoscale; 2018 Jun; 10(23):10979-10985. PubMed ID: 29856461
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Facile synthesis of metal oxide/reduced graphene oxide hybrids with high lithium storage capacity and stable cyclability.
    Zhu J; Zhu T; Zhou X; Zhang Y; Lou XW; Chen X; Zhang H; Hng HH; Yan Q
    Nanoscale; 2011 Mar; 3(3):1084-9. PubMed ID: 21180729
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effective mechanical properties of hexagonal boron nitride nanosheets.
    Boldrin L; Scarpa F; Chowdhury R; Adhikari S
    Nanotechnology; 2011 Dec; 22(50):505702. PubMed ID: 22108443
    [TBL] [Abstract][Full Text] [Related]  

  • 56. CuO nanostructures supported on Cu substrate as integrated electrodes for highly reversible lithium storage.
    Wang Z; Su F; Madhavi S; Lou XW
    Nanoscale; 2011 Apr; 3(4):1618-23. PubMed ID: 21286653
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Boron nitride nanosheet coatings with controllable water repellency.
    Pakdel A; Zhi C; Bando Y; Nakayama T; Golberg D
    ACS Nano; 2011 Aug; 5(8):6507-15. PubMed ID: 21766852
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Facile and rapid synthesis of RGO-In2S3 composites with enhanced cyclability and high capacity for lithium storage.
    Ye F; Du G; Jiang Z; Zhong Y; Wang X; Cao Q; Jiang JZ
    Nanoscale; 2012 Dec; 4(23):7354-7. PubMed ID: 23093135
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Controllable synthesis of few-layered and hierarchically porous boron nitride nanosheets.
    Xiao F; Chen Z; Casillas G; Richardson C; Li H; Huang Z
    Chem Commun (Camb); 2016 Mar; 52(20):3911-4. PubMed ID: 26871737
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Boron nitride nanosheets as barrier enhancing fillers in melt processed composites.
    Xie S; Istrate OM; May P; Barwich S; Bell AP; Khan U; Coleman JN
    Nanoscale; 2015 Mar; 7(10):4443-50. PubMed ID: 25679478
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.