These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
310 related articles for article (PubMed ID: 23108453)
1. An ascorbic acid sensor based on protein-modified Au nanoclusters. Wang X; Wu P; Hou X; Lv Y Analyst; 2013 Jan; 138(1):229-33. PubMed ID: 23108453 [TBL] [Abstract][Full Text] [Related]
2. A "turn-on" fluorescent sensor for ozone detection in ambient air using protein-directed gold nanoclusters. Wu D; Qi W; Liu C; Zhang Q Anal Bioanal Chem; 2017 Apr; 409(10):2539-2546. PubMed ID: 28124753 [TBL] [Abstract][Full Text] [Related]
3. Fluorescent gold clusters as nanosensors for copper ions in live cells. Durgadas CV; Sharma CP; Sreenivasan K Analyst; 2011 Mar; 136(5):933-40. PubMed ID: 21152627 [TBL] [Abstract][Full Text] [Related]
4. Protein-templated gold nanoclusters based sensor for off-on detection of ciprofloxacin with a high selectivity. Chen Z; Qian S; Chen J; Cai J; Wu S; Cai Z Talanta; 2012 May; 94():240-5. PubMed ID: 22608442 [TBL] [Abstract][Full Text] [Related]
5. Ni(2+)-modified gold nanoclusters for fluorescence turn-on detection of histidine in biological fluids. He Y; Wang X; Zhu J; Zhong S; Song G Analyst; 2012 Sep; 137(17):4005-9. PubMed ID: 22766627 [TBL] [Abstract][Full Text] [Related]
6. Fluorescence quenching for chloramphenicol detection in milk based on protein-stabilized Au nanoclusters. Tan Z; Xu H; Li G; Yang X; Choi MM Spectrochim Acta A Mol Biomol Spectrosc; 2015; 149():615-20. PubMed ID: 25985125 [TBL] [Abstract][Full Text] [Related]
7. A fluorescence detection of D-penicillamine based on Cu(2+)-induced fluorescence quenching system of protein-stabilized gold nanoclusters. Wang P; Li BL; Li NB; Luo HQ Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan; 135():198-202. PubMed ID: 25064503 [TBL] [Abstract][Full Text] [Related]
8. Microwave-assisted synthesis of BSA-protected small gold nanoclusters and their fluorescence-enhanced sensing of silver(I) ions. Yue Y; Liu TY; Li HW; Liu Z; Wu Y Nanoscale; 2012 Apr; 4(7):2251-4. PubMed ID: 22382936 [TBL] [Abstract][Full Text] [Related]
9. A label-free fluorescent assay for free chlorine in drinking water based on protein-stabilized gold nanoclusters. Xiong X; Tang Y; Zhang L; Zhao S Talanta; 2015 Jan; 132():790-5. PubMed ID: 25476379 [TBL] [Abstract][Full Text] [Related]
10. Highly selective fluorescent sensors for Hg(2+) based on bovine serum albumin-capped gold nanoclusters. Hu D; Sheng Z; Gong P; Zhang P; Cai L Analyst; 2010 Jun; 135(6):1411-6. PubMed ID: 20419194 [TBL] [Abstract][Full Text] [Related]
11. "Turn-Off-On" Fluorescence Switching of Ascorbic Acid-Reductive Silver Nanoclusters: a Sensor for Ascorbic Acid and Arginine in Biological Fluids. Li N; He Y; Ge Y; Song G J Fluoresc; 2017 Jan; 27(1):293-302. PubMed ID: 27796631 [TBL] [Abstract][Full Text] [Related]
12. Tuning of gold nanoclusters sensing applications with bovine serum albumin and bromelain for detection of Hg Bhamore JR; Jha S; Basu H; Singhal RK; Murthy ZVP; Kailasa SK Anal Bioanal Chem; 2018 Apr; 410(11):2781-2791. PubMed ID: 29480389 [TBL] [Abstract][Full Text] [Related]
13. A novel switchable fluorescent sensor for facile and highly sensitive detection of alkaline phosphatase activity in a water environment with gold/silver nanoclusters. Wang X; Liu Z; Zhao W; Sun J; Qian B; Wang X; Zeng H; Du D; Duan J Anal Bioanal Chem; 2019 Feb; 411(5):1009-1017. PubMed ID: 30552495 [TBL] [Abstract][Full Text] [Related]
14. A label-free method for detecting biological thiols based on blocking of Hg2+-quenching of fluorescent gold nanoclusters. Park KS; Kim MI; Woo MA; Park HG Biosens Bioelectron; 2013 Jul; 45():65-9. PubMed ID: 23454739 [TBL] [Abstract][Full Text] [Related]
15. Protein-templated gold nanoclusters: size dependent inversion of fluorescence emission in the presence of molecular oxygen. Das T; Ghosh P; Shanavas MS; Maity A; Mondal S; Purkayastha P Nanoscale; 2012 Sep; 4(19):6018-24. PubMed ID: 22915187 [TBL] [Abstract][Full Text] [Related]
16. Sensitive iodate sensor based on fluorescence quenching of gold nanocluster. Li R; Xu P; Fan J; Di J; Tu Y; Yan J Anal Chim Acta; 2014 May; 827():80-5. PubMed ID: 24832998 [TBL] [Abstract][Full Text] [Related]
17. Off-on phosphorescence assay of heparin via gold nanoclusters modulated with protamine. Ding SN; Li CM; Bao N Biosens Bioelectron; 2015 Feb; 64():333-7. PubMed ID: 25243863 [TBL] [Abstract][Full Text] [Related]
18. Immune-independent and label-free fluorescent assay for Cystatin C detection based on protein-stabilized Au nanoclusters. Lin H; Li L; Lei C; Xu X; Nie Z; Guo M; Huang Y; Yao S Biosens Bioelectron; 2013 Mar; 41():256-61. PubMed ID: 23017686 [TBL] [Abstract][Full Text] [Related]
19. Highly sensitive fluorescent detection of trypsin based on BSA-stabilized gold nanoclusters. Hu L; Han S; Parveen S; Yuan Y; Zhang L; Xu G Biosens Bioelectron; 2012 Feb; 32(1):297-9. PubMed ID: 22209331 [TBL] [Abstract][Full Text] [Related]
20. Label-free turn-on fluorescent detection of melamine based on the anti-quenching ability of Hg 2+ to gold nanoclusters. Dai H; Shi Y; Wang Y; Sun Y; Hu J; Ni P; Li Z Biosens Bioelectron; 2014 Mar; 53():76-81. PubMed ID: 24121226 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]