BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 23108592)

  • 21. Prediction of protein structural classes for low-similarity sequences using reduced PSSM and position-based secondary structural features.
    Wang J; Wang C; Cao J; Liu X; Yao Y; Dai Q
    Gene; 2015 Jan; 554(2):241-8. PubMed ID: 25445293
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prediction of protein structure classes by incorporating different protein descriptors into general Chou's pseudo amino acid composition.
    Nanni L; Brahnam S; Lumini A
    J Theor Biol; 2014 Nov; 360():109-116. PubMed ID: 25026218
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mito-GSAAC: mitochondria prediction using genetic ensemble classifier and split amino acid composition.
    Afridi TH; Khan A; Lee YS
    Amino Acids; 2012 Apr; 42(4):1443-54. PubMed ID: 21445589
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A protein structural classes prediction method based on predicted secondary structure and PSI-BLAST profile.
    Ding S; Li Y; Shi Z; Yan S
    Biochimie; 2014 Feb; 97():60-5. PubMed ID: 24067326
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MitProt-Pred: Predicting mitochondrial proteins of Plasmodium falciparum parasite using diverse physiochemical properties and ensemble classification.
    Mirza MT; Khan A; Tahir M; Lee YS
    Comput Biol Med; 2013 Oct; 43(10):1502-11. PubMed ID: 24034742
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Using principal component analysis and support vector machine to predict protein structural class for low-similarity sequences via PSSM.
    Zhang S; Ye F; Yuan X
    J Biomol Struct Dyn; 2012; 29(6):634-42. PubMed ID: 22545994
    [TBL] [Abstract][Full Text] [Related]  

  • 27. IDM-PhyChm-Ens: intelligent decision-making ensemble methodology for classification of human breast cancer using physicochemical properties of amino acids.
    Ali S; Majid A; Khan A
    Amino Acids; 2014 Apr; 46(4):977-93. PubMed ID: 24390396
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Using recurrence quantification analysis descriptors for protein sequence classification with support vector machines.
    Mitra J; Mundra P; Kulkarni BD; Jayaraman VK
    J Biomol Struct Dyn; 2007 Dec; 25(3):289-98. PubMed ID: 17937490
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A classifier ensemble approach for the missing feature problem.
    Nanni L; Lumini A; Brahnam S
    Artif Intell Med; 2012 May; 55(1):37-50. PubMed ID: 22188722
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Support vector machine learning from heterogeneous data: an empirical analysis using protein sequence and structure.
    Lewis DP; Jebara T; Noble WS
    Bioinformatics; 2006 Nov; 22(22):2753-60. PubMed ID: 16966363
    [TBL] [Abstract][Full Text] [Related]  

  • 31. GPCR-MPredictor: multi-level prediction of G protein-coupled receptors using genetic ensemble.
    Naveed M; Khan A
    Amino Acids; 2012 May; 42(5):1809-23. PubMed ID: 21505826
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of RNA-binding sites in proteins by integrating various sequence information.
    Wang CC; Fang Y; Xiao J; Li M
    Amino Acids; 2011 Jan; 40(1):239-48. PubMed ID: 20549269
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Protein remote homology detection based on auto-cross covariance transformation.
    Liu X; Zhao L; Dong Q
    Comput Biol Med; 2011 Aug; 41(8):640-7. PubMed ID: 21664609
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reducing dimensionality in remote homology detection using predicted contact maps.
    Bedoya O; Tischer I
    Comput Biol Med; 2015 Apr; 59():64-72. PubMed ID: 25679476
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A highly accurate protein structural class prediction approach using auto cross covariance transformation and recursive feature elimination.
    Li X; Liu T; Tao P; Wang C; Chen L
    Comput Biol Chem; 2015 Dec; 59 Pt A():95-100. PubMed ID: 26460680
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Using ensemble of classifiers for predicting HIV protease cleavage sites in proteins.
    Nanni L; Lumini A
    Amino Acids; 2009 Mar; 36(3):409-16. PubMed ID: 18401541
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prediction of flavin mono-nucleotide binding sites using modified PSSM profile and ensemble support vector machine.
    Wang X; Mi G; Wang C; Zhang Y; Li J; Guo Y; Pu X; Li M
    Comput Biol Med; 2012 Nov; 42(11):1053-9. PubMed ID: 22985817
    [TBL] [Abstract][Full Text] [Related]  

  • 38. SVM-HUSTLE--an iterative semi-supervised machine learning approach for pairwise protein remote homology detection.
    Shah AR; Oehmen CS; Webb-Robertson BJ
    Bioinformatics; 2008 Mar; 24(6):783-90. PubMed ID: 18245127
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protein-RNA interface residue prediction using machine learning: an assessment of the state of the art.
    Walia RR; Caragea C; Lewis BA; Towfic F; Terribilini M; El-Manzalawy Y; Dobbs D; Honavar V
    BMC Bioinformatics; 2012 May; 13():89. PubMed ID: 22574904
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mismatch string kernels for discriminative protein classification.
    Leslie CS; Eskin E; Cohen A; Weston J; Noble WS
    Bioinformatics; 2004 Mar; 20(4):467-76. PubMed ID: 14990442
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.