BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 23109233)

  • 21. Biotic ligand modeling approach: Synthesis of the effect of major cations on the toxicity of metals to soil and aquatic organisms.
    Ardestani MM; van Straalen NM; van Gestel CA
    Environ Toxicol Chem; 2015 Oct; 34(10):2194-204. PubMed ID: 25953362
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Experimental determinations of soil copper toxicity to lettuce (Lactuca sativa) growth in highly different copper spiked and aged soils.
    Christiansen KS; Borggaard OK; Holm PE; Vijver MG; Hauschild MZ; Peijnenburg WJ
    Environ Sci Pollut Res Int; 2015 Apr; 22(7):5283-92. PubMed ID: 25395323
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of the effects of binary metal mixtures on short-term uptake of Ag, Cu, and Ni by rainbow trout (Oncorhynchus mykiss).
    Brix KV; Tellis MS; Crémazy A; Wood CM
    Aquat Toxicol; 2016 Nov; 180():236-246. PubMed ID: 27750117
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluating the Combined Toxicity of Cu and ZnO Nanoparticles: Utility of the Concept of Additivity and a Nested Experimental Design.
    Liu Y; Baas J; Peijnenburg WJ; Vijver MG
    Environ Sci Technol; 2016 May; 50(10):5328-37. PubMed ID: 27070131
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metal Removal by a Free Surface Constructed Wetland and Prediction of Metal Bioavailability and Toxicity with Diffusive Gradients in Thin Films (DGT) and Biotic Ligand Model (BLM).
    Qin C; Xu X; Peck E
    Environ Manage; 2022 May; 69(5):994-1004. PubMed ID: 34811569
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Internal concentration as a better predictor of metal toxicity than the fractional coverage of metals on biotic ligand: Comparison of 3 modeling approaches.
    Gao Y; Feng J; Zhu L
    Environ Toxicol Chem; 2016 Nov; 35(11):2721-2733. PubMed ID: 27028101
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Predicting the toxicity of metal mixtures.
    Balistrieri LS; Mebane CA
    Sci Total Environ; 2014 Jan; 466-467():788-99. PubMed ID: 23973545
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Testing an application of a biotic ligand model to predict acute toxicity of metal mixtures to rainbow trout.
    Iwasaki Y; Kamo M; Naito W
    Environ Toxicol Chem; 2015 Apr; 34(4):754-60. PubMed ID: 25323464
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantifying the interactions among metal mixtures in toxicodynamic process with generalized linear model.
    Feng J; Gao Y; Ji Y; Zhu L
    J Hazard Mater; 2018 Mar; 345():97-106. PubMed ID: 29131987
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modeling of acute cadmium toxicity in solution to barley root elongation using biotic ligand model theory.
    Wang X; Wu M; Ma J; Chen X; Hua L
    J Environ Sci (China); 2016 Apr; 42():112-118. PubMed ID: 27090701
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A new model for predicting time course toxicity of heavy metals based on Biotic Ligand Model (BLM).
    Hatano A; Shoji R
    Comp Biochem Physiol C Toxicol Pharmacol; 2010 Jan; 151(1):25-32. PubMed ID: 19689929
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Using quantitative ion character-activity relationship (QICAR) method in evaluation of metal toxicity toward wheat.
    Luo X; Wang X; Tang Y; Liu Y; Wang Y
    Ecotoxicol Environ Saf; 2021 Sep; 221():112443. PubMed ID: 34166939
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantification of metal bioavailability for lettuce (Lactuca sativa L.) in field soils.
    Peijnenburg W; Baerselman R; de Groot A; Jager T; Leenders D; Posthuma L; Van Veen R
    Arch Environ Contam Toxicol; 2000 Nov; 39(4):420-30. PubMed ID: 11031301
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biotic ligand model development predicting Zn toxicity to the alga Pseudokirchneriella subcapitata: possibilities and limitations.
    Heijerick DG; De Schamphelaere KA; Janssen CR
    Comp Biochem Physiol C Toxicol Pharmacol; 2002 Sep; 133(1-2):207-18. PubMed ID: 12356528
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Testing the toxicity of metals, phenol, effluents, and receiving waters by root elongation in Lactuca sativa L.
    Lyu J; Park J; Kumar Pandey L; Choi S; Lee H; De Saeger J; Depuydt S; Han T
    Ecotoxicol Environ Saf; 2018 Mar; 149():225-232. PubMed ID: 29182968
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantitative ion character-activity relationship methods for assessing the ecotoxicity of soil metal(loid)s to lettuce.
    Luo X; Wang X; Xia C; Peng J; Wang Y; Tang Y; Gao F
    Environ Sci Pollut Res Int; 2023 Feb; 30(9):24521-24532. PubMed ID: 36336735
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of a biotic ligand model (BLM) predicting nickel toxicity to barley (Hordeum vulgare).
    Lock K; Van Eeckhout H; De Schamphelaere KA; Criel P; Janssen CR
    Chemosphere; 2007 Jan; 66(7):1346-52. PubMed ID: 16908050
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Acute toxicity of binary and ternary mixtures of Cd, Cu, and Zn to Daphnia magna.
    Meyer JS; Ranville JF; Pontasch M; Gorsuch JW; Adams WJ
    Environ Toxicol Chem; 2015 Apr; 34(4):799-808. PubMed ID: 25336231
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Use of the biotic ligand model to predict pulse-exposure toxicity of copper to fathead minnows (Pimephales promelas).
    Meyer JS; Boese CJ; Morris JM
    Aquat Toxicol; 2007 Aug; 84(2):268-78. PubMed ID: 17659358
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Combining a Standardized Batch Test with the Biotic Ligand Model to Predict Copper and Zinc Ecotoxicity in Soils.
    Tiberg C; Smolders E; Fröberg M; Gustafsson JP; Kleja DB
    Environ Toxicol Chem; 2022 Jun; 41(6):1540-1554. PubMed ID: 35262220
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.