These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
491 related articles for article (PubMed ID: 23109486)
1. Tailor-made anion-exchange membranes for salinity gradient power generation using reverse electrodialysis. Guler E; Zhang Y; Saakes M; Nijmeijer K ChemSusChem; 2012 Nov; 5(11):2262-70. PubMed ID: 23109486 [TBL] [Abstract][Full Text] [Related]
2. Comparison of Physicochemical Properties of Two Types of Polyepichlorohydrin-Based Anion Exchange Membranes for Reverse Electrodialysis. Karakoç E; Güler E Membranes (Basel); 2022 Feb; 12(3):. PubMed ID: 35323732 [TBL] [Abstract][Full Text] [Related]
3. Comparison of energy efficiency and power density in pressure retarded osmosis and reverse electrodialysis. Yip NY; Elimelech M Environ Sci Technol; 2014 Sep; 48(18):11002-12. PubMed ID: 25157687 [TBL] [Abstract][Full Text] [Related]
4. Further Development of Polyepichlorohydrin Based Anion Exchange Membranes for Reverse Electrodialysis by Tuning Cast Solution Properties. Eti M; Cihanoğlu A; Güler E; Gomez-Coma L; Altıok E; Arda M; Ortiz I; Kabay N Membranes (Basel); 2022 Nov; 12(12):. PubMed ID: 36557099 [TBL] [Abstract][Full Text] [Related]
5. Thermodynamic, energy efficiency, and power density analysis of reverse electrodialysis power generation with natural salinity gradients. Yip NY; Vermaas DA; Nijmeijer K; Elimelech M Environ Sci Technol; 2014 May; 48(9):4925-36. PubMed ID: 24697542 [TBL] [Abstract][Full Text] [Related]
6. Electrical power from sea and river water by reverse electrodialysis: a first step from the laboratory to a real power plant. Veerman J; Saakes M; Metz SJ; Harmsen GJ Environ Sci Technol; 2010 Dec; 44(23):9207-12. PubMed ID: 20964356 [TBL] [Abstract][Full Text] [Related]
7. 2D fluorescence spectroscopy for monitoring ion-exchange membrane based technologies - Reverse electrodialysis (RED). Pawlowski S; Galinha CF; Crespo JG; Velizarov S Water Res; 2016 Jan; 88():184-198. PubMed ID: 26497936 [TBL] [Abstract][Full Text] [Related]
8. High-performance ionic diode membrane for salinity gradient power generation. Gao J; Guo W; Feng D; Wang H; Zhao D; Jiang L J Am Chem Soc; 2014 Sep; 136(35):12265-72. PubMed ID: 25137214 [TBL] [Abstract][Full Text] [Related]
9. Engineered cellulose nanofibers membranes with oppositely charge characteristics for high-performance salinity gradient power generation by reverse electrodialysis. Wang S; Sun Z; Ahmad M; Fu W; Gao Z Int J Biol Macromol; 2023 Dec; 253(Pt 1):126608. PubMed ID: 37652325 [TBL] [Abstract][Full Text] [Related]
10. Morphologically Aligned Cation-Exchange Membranes by a Pulsed Electric Field for Reverse Electrodialysis. Lee JY; Kim JH; Lee JH; Kim S; Moon SH Environ Sci Technol; 2015 Jul; 49(14):8872-7. PubMed ID: 26114376 [TBL] [Abstract][Full Text] [Related]
11. Direct power production from a water salinity difference in a membrane-modified supercapacitor flow cell. Sales BB; Saakes M; Post JW; Buisman CJ; Biesheuvel PM; Hamelers HV Environ Sci Technol; 2010 Jul; 44(14):5661-5. PubMed ID: 20568741 [TBL] [Abstract][Full Text] [Related]
12. Thin-film composite pressure retarded osmosis membranes for sustainable power generation from salinity gradients. Yip NY; Tiraferri A; Phillip WA; Schiffman JD; Hoover LA; Kim YC; Elimelech M Environ Sci Technol; 2011 May; 45(10):4360-9. PubMed ID: 21491936 [TBL] [Abstract][Full Text] [Related]
13. Doubled power density from salinity gradients at reduced intermembrane distance. Vermaas DA; Saakes M; Nijmeijer K Environ Sci Technol; 2011 Aug; 45(16):7089-95. PubMed ID: 21736348 [TBL] [Abstract][Full Text] [Related]
14. Fouling in reverse electrodialysis under natural conditions. Vermaas DA; Kunteng D; Saakes M; Nijmeijer K Water Res; 2013 Mar; 47(3):1289-98. PubMed ID: 23266386 [TBL] [Abstract][Full Text] [Related]
15. Ionic resistance and permselectivity tradeoffs in anion exchange membranes. Geise GM; Hickner MA; Logan BE ACS Appl Mater Interfaces; 2013 Oct; 5(20):10294-301. PubMed ID: 24040962 [TBL] [Abstract][Full Text] [Related]
16. Electrospinning of Polyepychlorhydrin and Polyacrylonitrile Anionic Exchange Membranes for Reverse Electrodialysis. Reyes-Aguilera JA; Villafaña-López L; Rentería-Martínez EC; Anderson SM; Jaime-Ferrer JS Membranes (Basel); 2021 Sep; 11(9):. PubMed ID: 34564534 [TBL] [Abstract][Full Text] [Related]
17. Ion-Exchange Membranes for the Fabrication of Reverse Electrodialysis Device. Singh R; Hong SH; Kim D J Vis Exp; 2021 Jul; (173):. PubMed ID: 34369931 [TBL] [Abstract][Full Text] [Related]
18. Microbial reverse electrodialysis cells for synergistically enhanced power production. Kim Y; Logan BE Environ Sci Technol; 2011 Jul; 45(13):5834-9. PubMed ID: 21644573 [TBL] [Abstract][Full Text] [Related]
19. Ammonium Bicarbonate Transport in Anion Exchange Membranes for Salinity Gradient Energy. Geise GM; Hickner MA; Logan BE ACS Macro Lett; 2013 Sep; 2(9):814-817. PubMed ID: 35606985 [TBL] [Abstract][Full Text] [Related]
20. Energy capture from thermolytic solutions in microbial reverse-electrodialysis cells. Cusick RD; Kim Y; Logan BE Science; 2012 Mar; 335(6075):1474-7. PubMed ID: 22383807 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]