These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 23109549)

  • 1. Data reduction methods for ektacytometry in clinical hemorheology.
    Baskurt OK; Meiselman HJ
    Clin Hemorheol Microcirc; 2013 Jan; 54(1):99-107. PubMed ID: 23109549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parameterization of red blood cell elongation index--shear stress curves obtained by ektacytometry.
    Baskurt OK; Hardeman MR; Uyuklu M; Ulker P; Cengiz M; Nemeth N; Shin S; Alexy T; Meiselman HJ
    Scand J Clin Lab Invest; 2009; 69(7):777-88. PubMed ID: 19929721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reviewing data reduction methods for ektacytometry.
    Kenyeres P; Rabai M; Toth A; Kesmarky G; Marton Z; Alexy T; Toth K
    Clin Hemorheol Microcirc; 2011; 47(2):143-50. PubMed ID: 21339634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of the level and duration of shear stress exposure that induces subhemolytic damage to erythrocytes.
    Simmonds MJ; Meiselman HJ
    Biorheology; 2016; 53(5-6):237-249. PubMed ID: 28222499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interpretation of osmotic gradient ektacytometry (osmoscan) data: a comparative study for methodological standards.
    Nemeth N; Kiss F; Miszti-Blasius K
    Scand J Clin Lab Invest; 2015 May; 75(3):213-22. PubMed ID: 25594795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hemorheological responses to an acute bout of maximal exercise in Veterans with Gulf War Illness.
    Qian W; Klein-Adams JC; Ndirangu DS; Chen Y; Falvo MJ; Condon MR
    Life Sci; 2021 Sep; 280():119714. PubMed ID: 34146554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analyzing shear stress-elongation index curves: comparison of two approaches to simplify data presentation.
    Baskurt OK; Meiselman HJ
    Clin Hemorheol Microcirc; 2004; 31(1):23-30. PubMed ID: 15272150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical model and experimental study of red blood cell (RBC) deformation in microchannels.
    Korin N; Bransky A; Dinnar U
    J Biomech; 2007; 40(9):2088-95. PubMed ID: 17188279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Eadie-Hofstee analysis of red blood cell deformability.
    Stadnick H; Onell R; Acker JP; Holovati JL
    Clin Hemorheol Microcirc; 2011; 47(3):229-39. PubMed ID: 21498902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Intensity Interval Training Improves Erythrocyte Osmotic Deformability.
    Huang YC; Hsu CC; Wang JS
    Med Sci Sports Exerc; 2019 Jul; 51(7):1404-1412. PubMed ID: 30768550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of three commercially available ektacytometers with different shearing geometries.
    Baskurt OK; Hardeman MR; Uyuklu M; Ulker P; Cengiz M; Nemeth N; Shin S; Alexy T; Meiselman HJ
    Biorheology; 2009; 46(3):251-64. PubMed ID: 19581731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of lanthanides on red blood cell deformability and response to mechanical stress: role of lanthanide ionic radius.
    Alexy T; Baskurt OK; Nemeth N; Uyuklu M; Wenby RB; Meiselman HJ
    Biorheology; 2011; 48(3-4):173-83. PubMed ID: 22156032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Splenic function and red blood cell deformability: The beneficial effects of spleen autotransplantation in animal experiments.
    Miko I; Nemeth N; Sajtos E; Brath E; Peto K; Furka A; Szabo G; Kiss F; Imre S; Furka I
    Clin Hemorheol Microcirc; 2010; 45(2-4):281-8. PubMed ID: 20675910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Importance of measurement temperature in detecting the alterations of red blood cell aggregation and deformability studied by ektacytometry: a study on experimental sepsis in rats.
    Başkurt OK; Mat F
    Clin Hemorheol Microcirc; 2000; 23(1):43-9. PubMed ID: 11214712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shear stress-induced improvement of red blood cell deformability.
    Meram E; Yilmaz BD; Bas C; Atac N; Yalcin O; Meiselman HJ; Baskurt OK
    Biorheology; 2013; 50(3-4):165-76. PubMed ID: 23863281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Red blood cell mechanical stability test.
    Baskurt OK; Meiselman HJ
    Clin Hemorheol Microcirc; 2013; 55(1):55-62. PubMed ID: 23445627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular determinants of low-shear blood viscosity.
    Baskurt OK; Meiselman HJ
    Biorheology; 1997; 34(3):235-47. PubMed ID: 9474265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative Stress Increases Erythrocyte Sensitivity to Shear-Mediated Damage.
    McNamee AP; Horobin JT; Tansley GD; Simmonds MJ
    Artif Organs; 2018 Feb; 42(2):184-192. PubMed ID: 28877350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the effect of microstructural changes of blood on energy dissipation in Couette flow.
    Kaliviotis E; Yianneskis M
    Clin Hemorheol Microcirc; 2008; 39(1-4):235-42. PubMed ID: 18503131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microscopic investigation of erythrocyte deformation dynamics.
    Zhao R; Antaki JF; Naik T; Bachman TN; Kameneva MV; Wu ZJ
    Biorheology; 2006; 43(6):747-65. PubMed ID: 17148857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.