These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 23110162)

  • 1. Climate change impacts on the future distribution of date palms: a modeling exercise using CLIMEX.
    Shabani F; Kumar L; Taylor S
    PLoS One; 2012; 7(10):e48021. PubMed ID: 23110162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Risk levels of invasive Fusarium oxysporum f. sp. in areas suitable for date palm (Phoenix dactylifera) cultivation under various climate change projections.
    Shabani F; Kumar L
    PLoS One; 2013; 8(12):e83404. PubMed ID: 24340100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Climate suitability modeling for Anastrepha suspensa (Diptera: Tephritidae): current and future invasion risk analysis.
    da Silva Santana G; Ronchi-Teles B; Dos Santos CM; Soares MA; Souza PGC; Araújo FHV; de Aguiar CVS; da Silva RS
    Int J Biometeorol; 2023 Jul; 67(7):1185-1197. PubMed ID: 37222775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimised and systematic suitable climate modelling confirms future longitudinal-trends for growing oil palm in Africa.
    Paterson RRM
    J Environ Manage; 2021 Dec; 300():113785. PubMed ID: 34562818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Climate change and the potential global distribution of Aedes aegypti: spatial modelling using GIS and CLIMEX.
    Khormi HM; Kumar L
    Geospat Health; 2014 May; 8(2):405-15. PubMed ID: 24893017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global alterations in areas of suitability for maize production from climate change and using a mechanistic species distribution model (CLIMEX).
    Ramirez-Cabral NYZ; Kumar L; Shabani F
    Sci Rep; 2017 Jul; 7(1):5910. PubMed ID: 28724952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling the current and potential future distributions of the sunn pest Eurygaster integriceps (Hemiptera: Scutelleridae) using CLIMEX.
    Aljaryian R; Kumar L; Taylor S
    Pest Manag Sci; 2016 Oct; 72(10):1989-2000. PubMed ID: 26833543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Future climate effects on suitability for growth of oil palms in Malaysia and Indonesia.
    Paterson RR; Kumar L; Taylor S; Lima N
    Sci Rep; 2015 Sep; 5():14457. PubMed ID: 26399638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Climate Change Impacts on the Potential Distribution and Abundance of the Brown Marmorated Stink Bug (Hemiptera: Pentatomidae) With Special Reference to North America and Europe.
    Kistner EJ
    Environ Entomol; 2017 Dec; 46(6):1212-1224. PubMed ID: 29069361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Climate change and the potential distribution of an invasive shrub, Lantana camara L.
    Taylor S; Kumar L; Reid N; Kriticos DJ
    PLoS One; 2012; 7(4):e35565. PubMed ID: 22536408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential distribution of an invasive species under climate change scenarios using CLIMEX and soil drainage: a case study of Lantana camara L. in Queensland, Australia.
    Taylor S; Kumar L
    J Environ Manage; 2013 Jan; 114():414-22. PubMed ID: 23164541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Longitudinal trends of future climate change and oil palm growth: empirical evidence for tropical Africa.
    Paterson RRM
    Environ Sci Pollut Res Int; 2021 May; 28(17):21193-21203. PubMed ID: 33410008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impacts of climate change and host plant availability on the global distribution of Brontispa longissima (Coleoptera: Chrysomelidae).
    Zou Y; Ge X; Guo S; Zhou Y; Wang T; Zong S
    Pest Manag Sci; 2020 Jan; 76(1):244-256. PubMed ID: 31148381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Projected future distribution of date palm and its potential use in alleviating micronutrient deficiency.
    Shabani F; Kumar L; Nojoumian AH; Esmaeili A; Toghyani M
    J Sci Food Agric; 2016 Mar; 96(4):1132-40. PubMed ID: 25847224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global-change vulnerability of a key plant resource, the African palms.
    Blach-Overgaard A; Balslev H; Dransfield J; Normand S; Svenning JC
    Sci Rep; 2015 Jul; 5():12611. PubMed ID: 26211732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduction in the potential distribution of bumble bees (Apidae: Bombus) in Mesoamerica under different climate change scenarios: Conservation implications.
    Martínez-López O; Koch JB; Martínez-Morales MA; Navarrete-Gutiérrez D; Enríquez E; Vandame R
    Glob Chang Biol; 2021 May; 27(9):1772-1787. PubMed ID: 33595918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Climate and host plant availability impact the future distribution of the bean leaf beetle (Cerotoma trifurcata).
    Berzitis EA; Minigan JN; Hallett RH; Newman JA
    Glob Chang Biol; 2014 Sep; 20(9):2778-92. PubMed ID: 24616016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The current and future potential geographical distribution of the oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae).
    Stephens AE; Kriticos DJ; Leriche A
    Bull Entomol Res; 2007 Aug; 97(4):369-78. PubMed ID: 17645818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential Distribution Predicted for Rhynchophorus ferrugineus in China under Different Climate Warming Scenarios.
    Ge X; He S; Wang T; Yan W; Zong S
    PLoS One; 2015; 10(10):e0141111. PubMed ID: 26496438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting the current potential and future world wide distribution of the onion maggot, Delia antiqua using maximum entropy ecological niche modeling.
    Ning S; Wei J; Feng J
    PLoS One; 2017; 12(2):e0171190. PubMed ID: 28158259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.