These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 23110212)

  • 21. A bacterial-type ABC transporter is involved in aluminum tolerance in rice.
    Huang CF; Yamaji N; Mitani N; Yano M; Nagamura Y; Ma JF
    Plant Cell; 2009 Feb; 21(2):655-67. PubMed ID: 19244140
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A tonoplast-localized half-size ABC transporter is required for internal detoxification of aluminum in rice.
    Huang CF; Yamaji N; Chen Z; Ma JF
    Plant J; 2012 Mar; 69(5):857-67. PubMed ID: 22035218
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transcriptional profiling of aluminum toxicity and tolerance responses in maize roots.
    Maron LG; Kirst M; Mao C; Milner MJ; Menossi M; Kochian LV
    New Phytol; 2008; 179(1):116-128. PubMed ID: 18399934
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dysfunction of the 4-coumarate:coenzyme A ligase 4CL4 impacts aluminum resistance and lignin accumulation in rice.
    Liu S; Zhao L; Liao Y; Luo Z; Wang H; Wang P; Zhao H; Xia J; Huang CF
    Plant J; 2020 Dec; 104(5):1233-1250. PubMed ID: 32989851
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An Al-inducible MATE gene is involved in external detoxification of Al in rice.
    Yokosho K; Yamaji N; Ma JF
    Plant J; 2011 Dec; 68(6):1061-9. PubMed ID: 21880027
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Retrotransposon-Mediated Aluminum Tolerance through Enhanced Expression of the Citrate Transporter OsFRDL4.
    Yokosho K; Yamaji N; Fujii-Kashino M; Ma JF
    Plant Physiol; 2016 Dec; 172(4):2327-2336. PubMed ID: 27744299
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genome-wide transcriptome analysis of expression in rice seedling roots in response to supplemental nitrogen.
    Chandran AK; Priatama RA; Kumar V; Xuan Y; Je BI; Kim CM; Jung KH; Han CD
    J Plant Physiol; 2016 Aug; 200():62-75. PubMed ID: 27340859
    [TBL] [Abstract][Full Text] [Related]  

  • 28. OsMADS27 regulates the root development in a NO
    Chen H; Xu N; Wu Q; Yu B; Chu Y; Li X; Huang J; Jin L
    Plant Sci; 2018 Dec; 277():20-32. PubMed ID: 30466586
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spatio-temporal dynamics in global rice gene expression (Oryza sativa L.) in response to high ammonium stress.
    Sun L; Di D; Li G; Kronzucker HJ; Shi W
    J Plant Physiol; 2017 May; 212():94-104. PubMed ID: 28282528
    [TBL] [Abstract][Full Text] [Related]  

  • 30. ART1 and putrescine contribute to rice aluminum resistance via OsMYB30 in cell wall modification.
    Gao LJ; Liu XP; Gao KK; Cui MQ; Zhu HH; Li GX; Yan JY; Wu YR; Ding ZJ; Chen XW; Ma JF; Harberd NP; Zheng SJ
    J Integr Plant Biol; 2023 Apr; 65(4):934-949. PubMed ID: 36515424
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Developmental characteristics and aluminum resistance of root border cells in rice seedlings.
    Cai M; Zhang S; Xing C; Wang F; Ning W; Lei Z
    Plant Sci; 2011 May; 180(5):702-8. PubMed ID: 21421421
    [TBL] [Abstract][Full Text] [Related]  

  • 32. One novel mitochondrial citrate synthase from Oryza sativa L. can enhance aluminum tolerance in transgenic tobacco.
    Han Y; Zhang W; Zhang B; Zhang S; Wang W; Ming F
    Mol Biotechnol; 2009 Jul; 42(3):299-305. PubMed ID: 19326262
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Heterologous Expression of a
    Liu YT; Shi QH; Cao HJ; Ma QB; Nian H; Zhang XX
    Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32326652
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differential expression of Nrat1 is responsible for Al-tolerance QTL on chromosome 2 in rice.
    Xia J; Yamaji N; Che J; Shen RF; Ma JF
    J Exp Bot; 2014 Aug; 65(15):4297-304. PubMed ID: 24821956
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transcript profiling of crown rootless1 mutant stem base reveals new elements associated with crown root development in rice.
    Coudert Y; Bès M; Le TV; Pré M; Guiderdoni E; Gantet P
    BMC Genomics; 2011 Aug; 12():387. PubMed ID: 21806801
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transcriptome analysis reveals significant difference in gene expression and pathways between two peanut cultivars under Al stress.
    Xiao D; Li X; Zhou YY; Wei L; Keovongkod C; He H; Zhan J; Wang AQ; He LF
    Gene; 2021 May; 781():145535. PubMed ID: 33631240
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Global Transcriptome Analysis Reveals Distinct Aluminum-Tolerance Pathways in the Al-Accumulating Species Hydrangea macrophylla and Marker Identification.
    Chen H; Lu C; Jiang H; Peng J
    PLoS One; 2015; 10(12):e0144927. PubMed ID: 26660093
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of a novel aluminum tolerance phenotyping platform used for comparisons of cereal aluminum tolerance and investigations into rice aluminum tolerance mechanisms.
    Famoso AN; Clark RT; Shaff JE; Craft E; McCouch SR; Kochian LV
    Plant Physiol; 2010 Aug; 153(4):1678-91. PubMed ID: 20538888
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MAOHUZI6/ETHYLENE INSENSITIVE3-LIKE1 and ETHYLENE INSENSITIVE3-LIKE2 Regulate Ethylene Response of Roots and Coleoptiles and Negatively Affect Salt Tolerance in Rice.
    Yang C; Ma B; He SJ; Xiong Q; Duan KX; Yin CC; Chen H; Lu X; Chen SY; Zhang JS
    Plant Physiol; 2015 Sep; 169(1):148-65. PubMed ID: 25995326
    [TBL] [Abstract][Full Text] [Related]  

  • 40. GhSTOP1, a C2H2 type zinc finger transcription factor is essential for aluminum and proton stress tolerance and lateral root initiation in cotton.
    Kundu A; Das S; Basu S; Kobayashi Y; Kobayashi Y; Koyama H; Ganesan M
    Plant Biol (Stuttg); 2019 Jan; 21(1):35-44. PubMed ID: 30098101
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.