BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 23110450)

  • 21. Analysis of repetitive amino acid motifs reveals the essential features of spider dragline silk proteins.
    Malay AD; Arakawa K; Numata K
    PLoS One; 2017; 12(8):e0183397. PubMed ID: 28832627
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rapid molecular diversification and homogenization of clustered major ampullate silk genes in Argiope garden spiders.
    Baker RH; Corvelo A; Hayashi CY
    PLoS Genet; 2022 Dec; 18(12):e1010537. PubMed ID: 36508456
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The common house spider, Parasteatoda tepidariorum, maintains silk gene expression on sub-optimal diet.
    Miller J; Vienneau-Hathaway J; Dendev E; Lan M; Ayoub NA
    PLoS One; 2020; 15(12):e0237286. PubMed ID: 33296374
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nearly complete
    Oktaviani NA; Malay AD; Matsugami A; Hayashi F; Numata K
    Biomol NMR Assign; 2020 Oct; 14(2):335-338. PubMed ID: 32767002
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multiple recombining loci encode MaSp1, the primary constituent of dragline silk, in widow spiders (Latrodectus: Theridiidae).
    Ayoub NA; Hayashi CY
    Mol Biol Evol; 2008 Feb; 25(2):277-86. PubMed ID: 18048404
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Conserved C-terminal domain of spider tubuliform spidroin 1 contributes to extensibility in synthetic fibers.
    Gnesa E; Hsia Y; Yarger JL; Weber W; Lin-Cereghino J; Lin-Cereghino G; Tang S; Agari K; Vierra C
    Biomacromolecules; 2012 Feb; 13(2):304-12. PubMed ID: 22176138
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Extraordinary Mechanical Properties of Composite Silk Through Hereditable Transgenic Silkworm Expressing Recombinant Major Ampullate Spidroin.
    You Z; Ye X; Ye L; Qian Q; Wu M; Song J; Che J; Zhong B
    Sci Rep; 2018 Oct; 8(1):15956. PubMed ID: 30374029
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Major ampullate spidroins from Euprosthenops australis: multiplicity at protein, mRNA and gene levels.
    Rising A; Johansson J; Larson G; Bongcam-Rudloff E; Engström W; Hjälm G
    Insect Mol Biol; 2007 Oct; 16(5):551-61. PubMed ID: 17680798
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Properties of two spliceoforms of major ampullate spidroin 1 reveal unique functions of N-linker region.
    Wang K; Wen R; Meng Q
    Int J Biol Macromol; 2020 Aug; 157():67-74. PubMed ID: 32339592
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Environmental conditions impinge on dragline silk protein composition.
    Guehrs KH; Schlott B; Grosse F; Weisshart K
    Insect Mol Biol; 2008 Sep; 17(5):553-64. PubMed ID: 18828841
    [TBL] [Abstract][Full Text] [Related]  

  • 31. NMR assignments of the N-terminal domain of Nephila clavipes spidroin 1.
    Parnham S; Gaines WA; Duggan BM; Marcotte WR; Hennig M
    Biomol NMR Assign; 2011 Oct; 5(2):131-3. PubMed ID: 21152998
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanical and physical properties of recombinant spider silk films using organic and aqueous solvents.
    Tucker CL; Jones JA; Bringhurst HN; Copeland CG; Addison JB; Weber WS; Mou Q; Yarger JL; Lewis RV
    Biomacromolecules; 2014 Aug; 15(8):3158-70. PubMed ID: 25030809
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Complexity of Spider Dragline Silk.
    Malay AD; Craig HC; Chen J; Oktaviani NA; Numata K
    Biomacromolecules; 2022 May; 23(5):1827-1840. PubMed ID: 35378031
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Diverse formulas for spider dragline fibers demonstrated by molecular and mechanical characterization of spitting spider silk.
    Correa-Garhwal SM; Garb JE
    Biomacromolecules; 2014 Dec; 15(12):4598-605. PubMed ID: 25340514
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis and characterization of multiblock copolymers based on spider dragline silk proteins.
    Zhou C; Leng B; Yao J; Qian J; Chen X; Zhou P; Knight DP; Shao Z
    Biomacromolecules; 2006 Aug; 7(8):2415-9. PubMed ID: 16903690
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Investigating the Atomic and Mesoscale Interactions that Facilitate Spider Silk Protein Pre-Assembly.
    Onofrei D; Stengel D; Jia D; Johnson HR; Trescott S; Soni A; Addison B; Muthukumar M; Holland GP
    Biomacromolecules; 2021 Aug; 22(8):3377-3385. PubMed ID: 34251190
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of proline on the network structure of major ampullate silks as inferred from their mechanical and optical properties.
    Savage KN; Gosline JM
    J Exp Biol; 2008 Jun; 211(Pt 12):1937-47. PubMed ID: 18515724
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comprehensive Proteomic Analysis of Spider Dragline Silk from Black Widows: A Recipe to Build Synthetic Silk Fibers.
    Larracas C; Hekman R; Dyrness S; Arata A; Williams C; Crawford T; Vierra CA
    Int J Mol Sci; 2016 Sep; 17(9):. PubMed ID: 27649139
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Untangling spider silk evolution with spidroin terminal domains.
    Garb JE; Ayoub NA; Hayashi CY
    BMC Evol Biol; 2010 Aug; 10():243. PubMed ID: 20696068
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Combining flagelliform and dragline spider silk motifs to produce tunable synthetic biopolymer fibers.
    Teulé F; Addison B; Cooper AR; Ayon J; Henning RW; Benmore CJ; Holland GP; Yarger JL; Lewis RV
    Biopolymers; 2012 Jun; 97(6):418-31. PubMed ID: 22012252
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.