These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
687 related articles for article (PubMed ID: 23110540)
21. Shellfish and residual chemical contaminants: hazards, monitoring, and health risk assessment along French coasts. Guéguen M; Amiard JC; Arnich N; Badot PM; Claisse D; Guérin T; Vernoux JP Rev Environ Contam Toxicol; 2011; 213():55-111. PubMed ID: 21541848 [TBL] [Abstract][Full Text] [Related]
22. Programmed cell death: molecular mechanisms and implications for safety assessment of nanomaterials. Andón FT; Fadeel B Acc Chem Res; 2013 Mar; 46(3):733-42. PubMed ID: 22720979 [TBL] [Abstract][Full Text] [Related]
23. Implementation of a multidisciplinary approach to solve complex nano EHS problems by the UC Center for the Environmental Implications of Nanotechnology. Xia T; Malasarn D; Lin S; Ji Z; Zhang H; Miller RJ; Keller AA; Nisbet RM; Harthorn BH; Godwin HA; Lenihan HS; Liu R; Gardea-Torresdey J; Cohen Y; Mädler L; Holden PA; Zink JI; Nel AE Small; 2013 May; 9(9-10):1428-43. PubMed ID: 23027589 [TBL] [Abstract][Full Text] [Related]
24. Advanced nuclear analytical and related techniques for the growing challenges in nanotoxicology. Chen C; Li YF; Qu Y; Chai Z; Zhao Y Chem Soc Rev; 2013 Nov; 42(21):8266-303. PubMed ID: 23868609 [TBL] [Abstract][Full Text] [Related]
25. Rationale of genotoxicity testing of nanomaterials: regulatory requirements and appropriateness of available OECD test guidelines. Warheit DB; Donner EM Nanotoxicology; 2010 Dec; 4():409-13. PubMed ID: 20925448 [TBL] [Abstract][Full Text] [Related]
26. Risk assessment and risk management of nanomaterials in the workplace: translating research to practice. Kuempel ED; Geraci CL; Schulte PA Ann Occup Hyg; 2012 Jul; 56(5):491-505. PubMed ID: 22752094 [TBL] [Abstract][Full Text] [Related]
27. Procedures and methods of benefit assessments for medicines in Germany. Bekkering GE; Kleijnen J Eur J Health Econ; 2008 Nov; 9 Suppl 1():5-29. PubMed ID: 18987905 [TBL] [Abstract][Full Text] [Related]
28. Nanomaterials for environmental remediation: investigating the role of nanoinformatics in support of environmental, health, and safety oversight of nanotechnologies at the local level. Massawe E J Environ Health; 2013; 76(1):8-17. PubMed ID: 23947284 [TBL] [Abstract][Full Text] [Related]
29. Sensors as tools for quantitation, nanotoxicity and nanomonitoring assessment of engineered nanomaterials. Sadik OA; Zhou AL; Kikandi S; Du N; Wang Q; Varner K J Environ Monit; 2009 Oct; 11(10):1782-800. PubMed ID: 19809701 [TBL] [Abstract][Full Text] [Related]
31. Quality-adjusted life-years lack quality in pediatric care: a critical review of published cost-utility studies in child health. Griebsch I; Coast J; Brown J Pediatrics; 2005 May; 115(5):e600-14. PubMed ID: 15867026 [TBL] [Abstract][Full Text] [Related]
32. Nanotoxicology and nanotechnology: new findings from the NIEHS and Superfund Research Program scientific community. Carlin DJ Rev Environ Health; 2014; 29(1-2):105-7. PubMed ID: 24695034 [TBL] [Abstract][Full Text] [Related]
33. Research strategies for safety evaluation of nanomaterials, part VIII: International efforts to develop risk-based safety evaluations for nanomaterials. Thomas K; Aguar P; Kawasaki H; Morris J; Nakanishi J; Savage N Toxicol Sci; 2006 Jul; 92(1):23-32. PubMed ID: 16687392 [TBL] [Abstract][Full Text] [Related]
34. Development of a preliminary framework for informing the risk analysis and risk management of nanoparticles. Morgan K Risk Anal; 2005 Dec; 25(6):1621-35. PubMed ID: 16506988 [TBL] [Abstract][Full Text] [Related]
35. Considerations on the EU definition of a nanomaterial: science to support policy making. Bleeker EA; de Jong WH; Geertsma RE; Groenewold M; Heugens EH; Koers-Jacquemijns M; van de Meent D; Popma JR; Rietveld AG; Wijnhoven SW; Cassee FR; Oomen AG Regul Toxicol Pharmacol; 2013 Feb; 65(1):119-25. PubMed ID: 23200793 [TBL] [Abstract][Full Text] [Related]
36. The applicability of chemical alternatives assessment for engineered nanomaterials. Hjorth R; Hansen SF; Jacobs M; Tickner J; Ellenbecker M; Baun A Integr Environ Assess Manag; 2017 Jan; 13(1):177-187. PubMed ID: 26887668 [TBL] [Abstract][Full Text] [Related]
37. Nanomaterials in the environment: from materials to high-throughput screening to organisms. Thomas CR; George S; Horst AM; Ji Z; Miller RJ; Peralta-Videa JR; Xia T; Pokhrel S; Mädler L; Gardea-Torresdey JL; Holden PA; Keller AA; Lenihan HS; Nel AE; Zink JI ACS Nano; 2011 Jan; 5(1):13-20. PubMed ID: 21261306 [TBL] [Abstract][Full Text] [Related]
38. Analysis of the occupational, consumer and environmental exposure to engineered nanomaterials used in 10 technology sectors. Nowack B; Brouwer C; Geertsma RE; Heugens EH; Ross BL; Toufektsian MC; Wijnhoven SW; Aitken RJ Nanotoxicology; 2013 Sep; 7(6):1152-6. PubMed ID: 22783888 [TBL] [Abstract][Full Text] [Related]
39. Analysis of currently available data for characterising the risk of engineered nanomaterials to the environment and human health--lessons learned from four case studies. Aschberger K; Micheletti C; Sokull-Klüttgen B; Christensen FM Environ Int; 2011 Aug; 37(6):1143-56. PubMed ID: 21397332 [TBL] [Abstract][Full Text] [Related]
40. Conceptual modeling for identification of worst case conditions in environmental risk assessment of nanomaterials using nZVI and C60 as case studies. Grieger KD; Hansen SF; Sørensen PB; Baun A Sci Total Environ; 2011 Sep; 409(19):4109-24. PubMed ID: 21737121 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]