These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 23110656)

  • 1. Accuracy and precision of CPET equipment: a comparison of breath-by-breath and mixing chamber systems.
    Beijst C; Schep G; Breda Ev; Wijn PF; Pul Cv
    J Med Eng Technol; 2013 Jan; 37(1):35-42. PubMed ID: 23110656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation of a portable equine metabolic measurement system.
    Art T; Duvivier DH; van Erck E; de Moffarts B; Votion D; Bedoret D; Lejeune JP; Lekeux P; Serteyn D
    Equine Vet J Suppl; 2006 Aug; (36):557-61. PubMed ID: 17402483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of oxygen uptake: validation of a "mask-free" method.
    Corazza I; Fabbiani L; Zannoli R
    Phys Med; 2007 Mar; 23(1):41-7. PubMed ID: 17568542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of oxygen uptake and carbon dioxide elimination using the bymixer: validation in a metabolic lung simulator.
    Rosenbaum A; Kirby C; Breen PH
    Anesthesiology; 2004 Jun; 100(6):1427-37. PubMed ID: 15166562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validity and reliability of three commercially available breath-by-breath respiratory systems.
    Carter J; Jeukendrup AE
    Eur J Appl Physiol; 2002 Mar; 86(5):435-41. PubMed ID: 11882930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validation of a new mixing chamber system for breath-by-breath indirect calorimetry.
    Kim DY; Robergs RA
    Appl Physiol Nutr Metab; 2012 Feb; 37(1):157-66. PubMed ID: 22300357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validity of COSMED's quark CPET mixing chamber system in evaluating energy metabolism during aerobic exercise in healthy male adults.
    Nieman DC; Austin MD; Dew D; Utter AC
    Res Sports Med; 2013; 21(2):136-45. PubMed ID: 23541100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of face mask, head hood, and canopy for breath sampling in flow-through indirect calorimetry to measure oxygen consumption and carbon dioxide production of preterm infants < 1500 grams.
    Bauer K; Pasel K; Uhrig C; Sperling P; Versmold H
    Pediatr Res; 1997 Jan; 41(1):139-44. PubMed ID: 8979303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxygen consumption using the K2 telemetry system and a metabolic cart.
    Peel C; Utsey C
    Med Sci Sports Exerc; 1993 Mar; 25(3):396-400. PubMed ID: 8455457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic variability analysis using a mixing chamber-breath by breath based indirect calorimeter and the clino-ortho maneuver.
    Cadena M; Infante O; Escalante B; Sacristan E; Rodriguez FJ; Medel LH; Azpiroz J
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():4652-5. PubMed ID: 18003043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of analyses of respiratory gases made with the K4b2 portable and Quark laboratory analysers in horses.
    Leprêtre PM; Metayer N; Giovagnoli G; Pagliei E; Barrey E
    Vet Rec; 2009 Jul; 165(1):22-5. PubMed ID: 19578191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Open-circuit respirometry: real-time, laboratory-based systems.
    Ward SA
    Eur J Appl Physiol; 2018 May; 118(5):875-898. PubMed ID: 29728765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cardiopulmonary exercise testing in systolic heart failure: from basic to advanced practice.
    Corrà U
    Monaldi Arch Chest Dis; 2016 Oct; 86(1-2):757. PubMed ID: 27748468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Clinical application of exercise testing in heart failure].
    Oikawa K; Koike A; Itoh H
    Nihon Rinsho; 2003 May; 61(5):796-800. PubMed ID: 12755005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biological quality control for cardiopulmonary exercise testing in multicenter clinical trials.
    Porszasz J; Blonshine S; Cao R; Paden HA; Casaburi R; Rossiter HB
    BMC Pulm Med; 2016 Jan; 16():13. PubMed ID: 26775292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of peak oxygen uptake in children using submaximal ratings of perceived exertion during treadmill exercise.
    Lambrick D; Bertelsen H; Eston R; Stoner L; Faulkner J
    Eur J Appl Physiol; 2016 Jun; 116(6):1189-95. PubMed ID: 27106870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving the specificity of the [13C]mixed triacylglycerol breath test by estimating carbon dioxide production from heart rate.
    Slater C; Preston T; Weaver LT
    Eur J Clin Nutr; 2006 Nov; 60(11):1245-52. PubMed ID: 16736067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accuracy of respiratory gas variables, substrate, and energy use from 15 CPET systems during simulated and human exercise.
    Van Hooren B; Souren T; Bongers BC
    Scand J Med Sci Sports; 2024 Jan; 34(1):e14490. PubMed ID: 37697640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A metabolic cart for measurement of oxygen uptake during human exercise using inspiratory flow rate.
    Jensen K; Jørgensen S; Johansen L
    Eur J Appl Physiol; 2002 Jul; 87(3):202-6. PubMed ID: 12111279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of accuracy and precision of heart rate calibration methods to estimate total carbon dioxide production during 13C-breath tests.
    Slater C; Preston T; Weaver LT
    Eur J Clin Nutr; 2006 Jan; 60(1):69-76. PubMed ID: 16151459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.