BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 23111521)

  • 1. Comparative measurements of the external radiation exposure in a 137Cs contaminated village in Belarus based on optically stimulated luminescence in NaCl and thermoluminescence in LiF.
    Bernhardsson C; Matskevich S; Mattsson S; Rääf C
    Health Phys; 2012 Dec; 103(6):740-9. PubMed ID: 23111521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring the external exposure dose in the contaminated area near the Chernobyl nuclear power station using the thermoluminescence of quartz in bricks.
    Sato H; Takatsuji T; Takada J; Endo S; Hoshi M; Sharifov VF; Veselkina II; Pilenko IV; Kalimullin WA; Masyakin VB; Yoshikawa I; Nagatomo T; Okajima S
    Health Phys; 2002 Aug; 83(2):227-36. PubMed ID: 12132710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On optically stimulated luminescence properties of household salt as a retrospective dosemeter.
    Timar-Gabor A; Trandafir O
    Radiat Prot Dosimetry; 2013 Aug; 155(4):404-9. PubMed ID: 23443414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurements of long-term external and internal radiation exposure of inhabitants of some villages of the Bryansk region of Russia after the Chernobyl accident.
    Bernhardsson C; Zvonova I; Rääf C; Mattsson S
    Sci Total Environ; 2011 Oct; 409(22):4811-7. PubMed ID: 21906781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synchrotron radiation in the study of the variation of dose response in thermoluminescence dosimeters with radiation energy.
    Kron T; Smith A; Hyodo K
    Australas Phys Eng Sci Med; 1996 Dec; 19(4):225-36. PubMed ID: 9060209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gamma-dose rates from terrestrial and Chernobyl radionuclides inside and outside settlements in the Bryansk Region, Russia in 1996-2003.
    Ramzaev V; Yonehara H; Hille R; Barkovsky A; Mishine A; Sahoo SK; Kurotaki K; Uchiyama M
    J Environ Radioact; 2006; 85(2-3):205-27. PubMed ID: 16095775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relative TL and OSL efficiency to protons of various dosimetric materials.
    Sądel M; Bilski P; Swakoń J
    Radiat Prot Dosimetry; 2014 Oct; 161(1-4):112-5. PubMed ID: 24036656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiation dosimetry for highly contaminated Belarusian, Russian and Ukrainian populations, and for less contaminated populations in Europe.
    Bouville A; Likhtarev IA; Kovgan LN; Minenko VF; Shinkarev SM; Drozdovitch VV
    Health Phys; 2007 Nov; 93(5):487-501. PubMed ID: 18049225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Response of lithium fluoride detector to charged particle LET].
    Wang GL; Qi ZN; Chen M; Huang ZX; Xu ZH
    Space Med Med Eng (Beijing); 2001 Apr; 14(2):154-6. PubMed ID: 11808573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An assessment of cumulative external doses from Chernobyl fallout for a forested area in Russia using the optically stimulated luminescence from quartz inclusions in bricks.
    Ramzaev V; Bøtter-Jensen L; Thomsen KJ; Andersson KG; Murray AS
    J Environ Radioact; 2008 Jul; 99(7):1154-64. PubMed ID: 18342414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermoluminescence response of LiF to alpha radiation.
    Barber DE; Ahmed AB
    Health Phys; 1986 Jun; 50(6):805-8. PubMed ID: 3710788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calculation of the effective external dose rate to a person staying in the resettlement zone of the Vetka district of the Gomel region of Belarus based on in situ and ex situ assessments in 2016-2018.
    Ramzaev V; Bernhardsson C; Dvornik A; Barkovsky A; Vodovatov A; Jönsson M; Gaponenko S
    J Environ Radioact; 2020 Apr; 214-215():106168. PubMed ID: 32063294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparative study on the susceptibility of LiF:Mg,Ti (TLD-100) and LiF:Mg,Cu,P (TLD-100H) to spurious signals in thermoluminescence dosimetry.
    Al-Haj A; Lagarde C; Mahyoub F
    Radiat Prot Dosimetry; 2007; 125(1-4):399-402. PubMed ID: 17223633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optically stimulated luminescence in retrospective dosimetry.
    Bøtter-Jensen L; Murray AS
    Radiat Prot Dosimetry; 2002; 101(1-4):309-14. PubMed ID: 12382758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of LiF:Ti thermoluminescence dosimeter material.
    Aypar A; Demirtaş H
    Int J Appl Radiat Isot; 1985 Jul; 36(7):566-8. PubMed ID: 4066063
    [No Abstract]   [Full Text] [Related]  

  • 16. Energy response of a thermoluminescent lithium fluoride disc dosimeter to beta-rays.
    Ogawa Y; Kimura Y; Honda Y
    Radioisotopes; 1985 Mar; 34(3):131-6. PubMed ID: 4011959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectrum-dose conversion operator of NaI(Tl) and CsI(Tl) scintillation detectors for air dose rate measurement in contaminated environments.
    Tsuda S; Saito K
    J Environ Radioact; 2017 Jan; 166(Pt 3):419-426. PubMed ID: 26952947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Method of thermoluminescent measurement of radiation doses from micrograys up to a megagray with a single LiF:Mg,Cu,P detector.
    Obryk B; Bilski P; Olko P
    Radiat Prot Dosimetry; 2011 Mar; 144(1-4):543-7. PubMed ID: 21051430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of high ambient radon on thermoluminescence dosimetry readings.
    Harvey JA; Kearfott KJ
    Radiat Prot Dosimetry; 2011 Nov; 147(4):491-7. PubMed ID: 21177272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The high dose response and functional capability of the DT-702/Pd lithium fluoride thermoluminescent dosimeter.
    Lawlor TM; Talmadge MD; Murray MM; Nelson ME; Mueller AC; Romanyukha AA; Fairchild GR; Grypp MD; Williams AS
    Health Phys; 2015 May; 108(5):514-9. PubMed ID: 25811149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.