BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 2311196)

  • 1. Electroporation of normal human DNA endonucleases into xeroderma pigmentosum cells corrects their DNA repair defect.
    Tsongalis GJ; Lambert WC; Lambert MW
    Carcinogenesis; 1990 Mar; 11(3):499-503. PubMed ID: 2311196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correction of the ultraviolet light induced DNA-repair defect in xeroderma pigmentosum cells by electroporation of a normal human endonuclease.
    Tsongalis GJ; Lambert WC; Lambert MW
    Mutat Res; 1990 Jul; 244(3):257-63. PubMed ID: 2366820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two DNA endonuclease activities from normal human and xeroderma pigmentosum chromatin active on psoralen plus ultraviolet light treated DNA.
    Lambert MW; Fenkart D; Clarke M
    Mutat Res; 1988 Jan; 193(1):65-73. PubMed ID: 3336371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromatin-associated DNA endonucleases from xeroderma pigmentosum cells are defective in interaction with damaged nucleosomal DNA.
    Parrish DD; Lambert MW
    Mutat Res; 1990 Mar; 235(2):65-80. PubMed ID: 2308593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Xeroderma pigmentosum endonuclease complexes show reduced activity on and affinity for psoralen cross-linked nucleosomal DNA.
    Parrish DD; Lambert WC; Lambert MW
    Mutat Res; 1992 Mar; 273(2):157-70. PubMed ID: 1372099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Xeroderma pigmentosum complementation group A protein acts as a processivity factor.
    Lambert MW; Yang L
    Biochem Biophys Res Commun; 2000 May; 271(3):782-7. PubMed ID: 10814539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Xeroderma pigmentosum and molecular cloning of DNA repair genes.
    Boulikas T
    Anticancer Res; 1996; 16(2):693-708. PubMed ID: 8687116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microinjection of Micrococcus luteus UV-endonuclease restores UV-induced unscheduled DNA synthesis in cells of 9 xeroderma pigmentosum complementation groups.
    de Jonge AJ; Vermeulen W; Keijzer W; Hoeijmakers JH; Bootsma D
    Mutat Res; 1985; 150(1-2):99-105. PubMed ID: 3839045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A processive versus a distributive mechanism of action correlates with differences in ability of normal and xeroderma pigmentosum group A endonucleases to incise damaged nucleosomal DNA.
    Feng S; Parrish DD; Lambert MW
    Carcinogenesis; 1997 Feb; 18(2):279-86. PubMed ID: 9054619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retroviral-mediated correction of DNA repair defect in xeroderma pigmentosum cells is associated with recovery of catalase activity.
    Quilliet X; Chevallier-Lagente O; Zeng L; Calvayrac R; Mezzina M; Sarasin A; Vuillaume M
    Mutat Res; 1997 Dec; 385(3):235-42. PubMed ID: 9506892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Xeroderma pigmentosum group F caused by a defect in a structure-specific DNA repair endonuclease.
    Sijbers AM; de Laat WL; Ariza RR; Biggerstaff M; Wei YF; Moggs JG; Carter KC; Shell BK; Evans E; de Jong MC; Rademakers S; de Rooij J; Jaspers NG; Hoeijmakers JH; Wood RD
    Cell; 1996 Sep; 86(5):811-22. PubMed ID: 8797827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complementation of the DNA repair deficiency in human xeroderma pigmentosum group a and C cells by recombinant adenovirus-mediated gene transfer.
    Muotri AR; Marchetto MC; Zerbini LF; Libermann TA; Ventura AM; Sarasin A; Menck CF
    Hum Gene Ther; 2002 Oct; 13(15):1833-44. PubMed ID: 12396616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identical defects in DNA repair in xeroderma pigmentosum group G and rodent ERCC group 5.
    O'Donovan A; Wood RD
    Nature; 1993 May; 363(6425):185-8. PubMed ID: 8483505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repair of damage by ultraviolet radiation in xeroderma pigmentosum cell strains of complementation groups E and F.
    Zelle B; Berends F; Lohman PH
    Mutat Res; 1980 Nov; 73(1):157-69. PubMed ID: 6265770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Defective DNA endonuclease activities in Fanconi's anemia cells, complementation groups A and B.
    Lambert MW; Tsongalis GJ; Lambert WC; Hang B; Parrish DD
    Mutat Res; 1992 Jan; 273(1):57-71. PubMed ID: 1376436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA excision in repair proficient and deficient human cells treated with a combination of ultraviolet radiation and acridine mustard (ICR-170) or 4-nitroquinoline 1-oxide.
    Ahmed FE; Setlow RB
    Chem Biol Interact; 1980 Jan; 29(1):31-42. PubMed ID: 6153160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An altered apurinic DNA endonuclease activity in group A and group D xeroderma pigmentosum fibroblasts.
    Kuhnlein U; Penhoet EE; Linn S
    Proc Natl Acad Sci U S A; 1976 Apr; 73(4):1169-73. PubMed ID: 1063398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic analysis of UV-induced incision discriminates between fibroblasts from different xeroderma pigmentosum complementation groups, XPA heterozygotes and normal individuals.
    Squires S; Johnson RT
    Mutat Res; 1988 Mar; 193(2):181-92. PubMed ID: 3347209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Induction and repair of psoralen cross-links in DNA of normal human and xeroderma pigmentosum fibroblasts.
    Bredberg A; Lambert B; Söderhäll S
    Mutat Res; 1982 Mar; 93(1):221-34. PubMed ID: 7062932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Absence of DNA repair deficiency in the confirmed heterozygotes of xeroderma pigmentosum group A.
    Moriwaki S; Nishigori C; Teramoto T; Tanaka T; Kore-eda S; Takebe H; Imamura S
    J Invest Dermatol; 1993 Jul; 101(1):69-72. PubMed ID: 8101209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.