These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 23112082)
41. Remarkable shape-sustaining, load-bearing, and self-healing properties displayed by a supramolecular gel derived from a bis-pyridyl-bis-amide of L-phenyl alanine. Das UK; Banerjee S; Dastidar P Chem Asian J; 2014 Sep; 9(9):2475-82. PubMed ID: 24962554 [TBL] [Abstract][Full Text] [Related]
42. Preparation and optical properties of fullerene/ferrocene hybrid hexagonal nanosheets and large-scale production of fullerene hexagonal nanosheets. Wakahara T; Sathish M; Miyazawa K; Hu C; Tateyama Y; Nemoto Y; Sasaki T; Ito O J Am Chem Soc; 2009 Jul; 131(29):9940-4. PubMed ID: 19569649 [TBL] [Abstract][Full Text] [Related]
43. Absorption spectrophotometric study of supramolecular complexation of [60]- and [70]fullerenes with 24,26-dimethoxy-25,27-dihydroxy calix[4]arene. Bhattacharya S; Nayak SK; Chattopadhyay S; Banerjee M Spectrochim Acta A Mol Biomol Spectrosc; 2006 Jan; 63(1):200-6. PubMed ID: 15953759 [TBL] [Abstract][Full Text] [Related]
44. Hinged nanorods made using a chemical approach to flexible nanostructures. Mirkovic T; Foo ML; Arsenault AC; Fournier-Bidoz S; Zacharia NS; Ozin GA Nat Nanotechnol; 2007 Sep; 2(9):565-9. PubMed ID: 18654369 [TBL] [Abstract][Full Text] [Related]
45. Pairing fullerenes and porphyrins: supramolecular wires that exhibit charge transfer activity. Wessendorf F; Grimm B; Guldi DM; Hirsch A J Am Chem Soc; 2010 Aug; 132(31):10786-95. PubMed ID: 20681711 [TBL] [Abstract][Full Text] [Related]
46. Novel CuS nanofibers using organogel as a template: controlled by binding sites. Xue P; Lu R; Li D; Jin M; Tan C; Bao C; Wang Z; Zhao Y Langmuir; 2004 Dec; 20(25):11234-9. PubMed ID: 15568880 [TBL] [Abstract][Full Text] [Related]
47. Fabrication of silica nanotubes by using self-assembled gels and their applications in environmental and biological fields. Jung JH; Park M; Shinkai S Chem Soc Rev; 2010 Nov; 39(11):4286-302. PubMed ID: 20856993 [TBL] [Abstract][Full Text] [Related]
48. Accurate method to quantify binding in supramolecular chemistry. Haav K; Kadam SA; Toom L; Gale PA; Busschaert N; Wenzel M; Hiscock JR; Kirby IL; Haljasorg T; Lõkov M; Leito I J Org Chem; 2013 Aug; 78(16):7796-808. PubMed ID: 23848503 [TBL] [Abstract][Full Text] [Related]
50. "Supramolecular" assembly of gold nanorods end-terminated with polymer "pom-poms": effect of pom-pom structure on the association modes. Nie Z; Fava D; Rubinstein M; Kumacheva E J Am Chem Soc; 2008 Mar; 130(11):3683-9. PubMed ID: 18298120 [TBL] [Abstract][Full Text] [Related]
51. Supramolecular porphyrin-fullerene via 'two-point' binding strategy: axial-coordination and cation-crown ether complexation. D'Souza F; Chitta R; Gadde S; Zandler ME; Sandanayaka AS; Araki Y; Ito O Chem Commun (Camb); 2005 Mar; (10):1279-81. PubMed ID: 15742051 [TBL] [Abstract][Full Text] [Related]
52. Efficient photoinduced electron transfer in a porphyrin tripod-fullerene supramolecular complex via pi-pi interactions in nonpolar media. Takai A; Chkounda M; Eggenspiller A; Gros CP; Lachkar M; Barbe JM; Fukuzumi S J Am Chem Soc; 2010 Mar; 132(12):4477-89. PubMed ID: 20201539 [TBL] [Abstract][Full Text] [Related]
53. Self-assembled nanotubes that reversibly bind acetic acid guests. Shimizu LS; Hughes AD; Smith MD; Davis MJ; Zhang BP; Zur Loye HC; Shimizu KD J Am Chem Soc; 2003 Dec; 125(49):14972-3. PubMed ID: 14653716 [TBL] [Abstract][Full Text] [Related]
54. Imprinted nanomaterials: a new class of synthetic receptors. Flavin K; Resmini M Anal Bioanal Chem; 2009 Jan; 393(2):437-44. PubMed ID: 19023566 [TBL] [Abstract][Full Text] [Related]
55. Supramolecular donor-acceptor heterojunctions by vectorial stepwise assembly of porphyrins and coordination-bonded fullerene arrays for photocurrent generation. Kira A; Umeyama T; Matano Y; Yoshida K; Isoda S; Park JK; Kim D; Imahori H J Am Chem Soc; 2009 Mar; 131(9):3198-200. PubMed ID: 19256567 [TBL] [Abstract][Full Text] [Related]
56. Nanomaterials as possible contaminants: the fullerene example. Wiesner MR; Hotze EM; Brant JA; Espinasse B Water Sci Technol; 2008; 57(3):305-10. PubMed ID: 18309205 [TBL] [Abstract][Full Text] [Related]
57. Metallosupramolecular receptors for fullerene binding and release. García-Simón C; Costas M; Ribas X Chem Soc Rev; 2016 Jan; 45(1):40-62. PubMed ID: 26456881 [TBL] [Abstract][Full Text] [Related]
58. Sol-gel conversion based on photoswitching between noncovalently and covalently linked netlike supramolecular polymers. Zhang Q; Qu DH; Ma X; Tian H Chem Commun (Camb); 2013 Oct; 49(84):9800-2. PubMed ID: 24029875 [TBL] [Abstract][Full Text] [Related]
59. Fibrous networks with incorporated macrocycles: a chiral stimuli-responsive supramolecular supergelator and its application to biocatalysis in organic media. Qi Z; Wu C; Malo de Molina P; Sun H; Schulz A; Griesinger C; Gradzielski M; Haag R; Ansorge-Schumacher MB; Schalley CA Chemistry; 2013 Jul; 19(31):10150-9. PubMed ID: 23843281 [TBL] [Abstract][Full Text] [Related]
60. pH clock instructed transient supramolecular peptide amphiphile and its vesicular assembly. Dowari P; Das S; Pramanik B; Das D Chem Commun (Camb); 2019 Dec; 55(94):14119-14122. PubMed ID: 31687686 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]