BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 23112142)

  • 21. Buccal penetration enhancers--how do they really work?
    Nicolazzo JA; Reed BL; Finnin BC
    J Control Release; 2005 Jun; 105(1-2):1-15. PubMed ID: 15894393
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Monodisperse polymer-virus hybrid nanoparticles.
    Sikkema FD; Comellas-Aragonès M; Fokkink RG; Verduin BJ; Cornelissen JJ; Nolte RJ
    Org Biomol Chem; 2007 Jan; 5(1):54-7. PubMed ID: 17164905
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Histological evaluation of buccal penetration enhancement properties of chitosan and trimethyl chitosan.
    Sandri G; Poggi P; Bonferoni MC; Rossi S; Ferrari F; Caramella C
    J Pharm Pharmacol; 2006 Oct; 58(10):1327-36. PubMed ID: 17034655
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Buccal mucosa as a route for systemic drug delivery: a review.
    Shojaei AH
    J Pharm Pharm Sci; 1998; 1(1):15-30. PubMed ID: 10942969
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Particle and nanoparticle interactions with fibrinogen: the importance of aggregation in nanotoxicology.
    Kendall M; Ding P; Kendall K
    Nanotoxicology; 2011 Mar; 5(1):55-65. PubMed ID: 21417688
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparative permeability of fresh and frozen/thawed porcine buccal mucosa towards various chemical markers.
    van Eyk AD; van der Biijl P
    SADJ; 2006 Jun; 61(5):200-3. PubMed ID: 16892714
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Permeability barrier properties of oral keratinocyte cultures: a model of intact human oral mucosa.
    Selvaratnam L; Cruchley AT; Navsaria H; Wertz PW; Hagi-Pavli EP; Leigh IM; Squier CA; Williams DM
    Oral Dis; 2001 Jul; 7(4):252-8. PubMed ID: 11575877
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A murine scavenger receptor MARCO recognizes polystyrene nanoparticles.
    Kanno S; Furuyama A; Hirano S
    Toxicol Sci; 2007 Jun; 97(2):398-406. PubMed ID: 17361018
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanoparticle-induced apoptosis propagates through hydrogen-peroxide-mediated bystander killing: insights from a human intestinal epithelium in vitro model.
    Thubagere A; Reinhard BM
    ACS Nano; 2010 Jul; 4(7):3611-22. PubMed ID: 20560658
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhancing the buccal mucosal uptake and retention of triamcinolone acetonide.
    Nicolazzo JA; Reed BL; Finnin BC
    J Control Release; 2005 Jul; 105(3):240-8. PubMed ID: 15921776
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Intracellular dynamics of cationic and anionic polystyrene nanoparticles without direct interaction with mitotic spindle and chromosomes.
    Liu Y; Li W; Lao F; Liu Y; Wang L; Bai R; Zhao Y; Chen C
    Biomaterials; 2011 Nov; 32(32):8291-303. PubMed ID: 21810539
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Barrier properties of gastrointestinal mucus to nanoparticle transport.
    Crater JS; Carrier RL
    Macromol Biosci; 2010 Dec; 10(12):1473-83. PubMed ID: 20857389
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Estimation of the theoretical pore sizes of the porcine oral mucosa for permeation of hydrophilic permeants.
    Goswami T; Jasti BR; Li X
    Arch Oral Biol; 2009 Jun; 54(6):577-82. PubMed ID: 19344889
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Distribution of thiolated mucoadhesive nanoparticles on intestinal mucosa.
    Dünnhaupt S; Barthelmes J; Hombach J; Sakloetsakun D; Arkhipova V; Bernkop-Schnürch A
    Int J Pharm; 2011 Apr; 408(1-2):191-9. PubMed ID: 21295123
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Permeability of lichen planus lesions and healthy buccal mucosa to water.
    van der Bijl P; Gluckman HL; van Eyk AD; Thompson IO
    SADJ; 1998 Nov; 53(11):493-6. PubMed ID: 10518918
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthesis of fluorescent polyisoprene nanoparticles and their uptake into various cells.
    Lorenz MR; Kohnle MV; Dass M; Walther P; Höcherl A; Ziener U; Landfester K; Mailänder V
    Macromol Biosci; 2008 Aug; 8(8):711-27. PubMed ID: 18504805
    [TBL] [Abstract][Full Text] [Related]  

  • 37. BSA adsorption on differently charged polystyrene nanoparticles using isothermal titration calorimetry and the influence on cellular uptake.
    Baier G; Costa C; Zeller A; Baumann D; Sayer C; Araujo PH; Mailänder V; Musyanovych A; Landfester K
    Macromol Biosci; 2011 May; 11(5):628-38. PubMed ID: 21384550
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of shape and size of polymer particles on cellular internalization.
    Park K
    J Control Release; 2010 Nov; 147(3):313. PubMed ID: 20933025
    [No Abstract]   [Full Text] [Related]  

  • 39. Variation in the internalization of differently sized nanoparticles induces different DNA-damaging effects on a macrophage cell line.
    Zhang M; Li J; Xing G; He R; Li W; Song Y; Guo H
    Arch Toxicol; 2011 Dec; 85(12):1575-88. PubMed ID: 21881955
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vitro permeation of tetramethylpyrazine across porcine buccal mucosa.
    Liu C; Xu HN; Li XL
    Acta Pharmacol Sin; 2002 Sep; 23(9):792-6. PubMed ID: 12230946
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.