These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 23112591)

  • 1. A monotonic degradation assessment index of rolling bearings using fuzzy support vector data description and running time.
    Shen Z; He Z; Chen X; Sun C; Liu Z
    Sensors (Basel); 2012; 12(8):10109-35. PubMed ID: 23112591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chaotic prediction of vibration performance degradation trend of rolling element bearing based on Weibull distribution.
    Cheng L; Xia X; Ye L
    Sci Prog; 2020; 103(1):36850419892194. PubMed ID: 31791201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rolling Bearing Performance Degradation Assessment with Adaptive Sensitive Feature Selection and Multi-Strategy Optimized SVDD.
    Feng Z; Wang Z; Liu X; Li J
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bearing remaining useful life prediction using support vector machine and hybrid degradation tracking model.
    Yan M; Wang X; Wang B; Chang M; Muhammad I
    ISA Trans; 2020 Mar; 98():471-482. PubMed ID: 31492470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep Learning-Based Adaptive Neural-Fuzzy Structure Scheme for Bearing Fault Pattern Recognition and Crack Size Identification.
    Piltan F; Duong BP; Kim JM
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33802732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of higher order spectral features and support vector machines for bearing faults classification.
    Saidi L; Ben Ali J; Fnaiech F
    ISA Trans; 2015 Jan; 54():193-206. PubMed ID: 25282095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selection of efficient degradation features for rolling element bearing prognosis using Gaussian Process Regression method.
    Kumar PS; Kumaraswamidhas LA; Laha SK
    ISA Trans; 2021 Jun; 112():386-401. PubMed ID: 33341238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intelligent Fault Diagnosis of Rolling-Element Bearings Using a Self-Adaptive Hierarchical Multiscale Fuzzy Entropy.
    Yan X; Xu Y; Jia M
    Entropy (Basel); 2021 Aug; 23(9):. PubMed ID: 34573753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-Shift Multiscale Fuzzy Entropy and Laplacian Support Vector Machine Based Rolling Bearing Fault Diagnosis.
    Zhu X; Zheng J; Pan H; Bao J; Zhang Y
    Entropy (Basel); 2018 Aug; 20(8):. PubMed ID: 33265691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Health Degradation Monitoring and Early Fault Diagnosis of a Rolling Bearing Based on CEEMDAN and Improved MMSE.
    Lv Y; Yuan R; Wang T; Li H; Song G
    Materials (Basel); 2018 Jun; 11(6):. PubMed ID: 29904002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Online Condition Monitoring of Bearings to Support Total Productive Maintenance in the Packaging Materials Industry.
    Gligorijevic J; Gajic D; Brkovic A; Savic-Gajic I; Georgieva O; Di Gennaro S
    Sensors (Basel); 2016 Mar; 16(3):316. PubMed ID: 26938541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Novel Health Indicator Based on Cointegration for Rolling Bearings' Run-To-Failure Process.
    Li H; Li Y; Yu H
    Sensors (Basel); 2019 May; 19(9):. PubMed ID: 31075916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HKF-SVR Optimized by Krill Herd Algorithm for Coaxial Bearings Performance Degradation Prediction.
    Liu F; Li L; Liu Y; Cao Z; Yang H; Lu S
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 31991654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advance spectral approach for condition evaluation of rolling element bearings.
    Tiwari P; Upadhyay SH
    ISA Trans; 2020 Aug; 103():366-389. PubMed ID: 32220531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fuzzy support vector machine-based personalizing method to address the inter-subject variance problem of physiological signals in a driver monitoring system.
    Choi M; Seo M; Lee JS; Kim SW
    Artif Intell Med; 2020 May; 105():101843. PubMed ID: 32505423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A data-driven prognostics method for explicit health index assessment and improved remaining useful life prediction of bearings.
    Bilendo F; Badihi H; Lu N; Jiang B
    ISA Trans; 2021 May; ():. PubMed ID: 33985788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reliability assessment for systems suffering competing degradation and random shocks under fuzzy environment.
    Yu H; Tang M
    Sci Prog; 2020; 103(1):36850419881088. PubMed ID: 31829889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fault Diagnosis for Rolling Bearings Based on Fine-Sorted Dispersion Entropy and SVM Optimized with Mutation SCA-PSO.
    Fu W; Tan J; Xu Y; Wang K; Chen T
    Entropy (Basel); 2019 Apr; 21(4):. PubMed ID: 33267118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Reliable Prognosis Approach for Degradation Evaluation of Rolling Bearing Using MCLSTM.
    Huang G; Li H; Ou J; Zhang Y; Zhang M
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32230874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. State-Degradation-Oriented Fault Diagnosis for High-Speed Train Running Gears System.
    Cheng C; Wang W; Luo H; Zhang B; Cheng G; Teng W
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32070006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.